BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30712786)

  • 1. Non-sinusoidal Waveform in Temperature-Compensated Circadian Oscillations.
    Gibo S; Kurosawa G
    Biophys J; 2019 Feb; 116(4):741-751. PubMed ID: 30712786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system.
    Qin X; Byrne M; Xu Y; Mori T; Johnson CH
    PLoS Biol; 2010 Jun; 8(6):e1000394. PubMed ID: 20563306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature compensation and entrainment in cyanobacteria circadian rhythm.
    Zhang G; Li Y
    Chronobiol Int; 2023 Jun; 40(6):795-802. PubMed ID: 37154032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms.
    Takigawa-Imamura H; Mochizuki A
    J Theor Biol; 2006 Jul; 241(2):178-92. PubMed ID: 16387328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic compensation and circadian resilience in prokaryotic cyanobacteria.
    Johnson CH; Egli M
    Annu Rev Biochem; 2014; 83():221-47. PubMed ID: 24905782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria.
    Naef F
    Mol Syst Biol; 2005; 1():2005.0019. PubMed ID: 16729054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the per protein in Drosophila.
    Leloup JC; Goldbeter A
    Chronobiol Int; 1997 Sep; 14(5):511-20. PubMed ID: 9298286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of posttranscriptional regulation in circadian clocks: lessons from Drosophila.
    Edery I
    Chronobiol Int; 1999 Jul; 16(4):377-414. PubMed ID: 10442235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular bases of circadian rhythms.
    Harmer SL; Panda S; Kay SA
    Annu Rev Cell Dev Biol; 2001; 17():215-53. PubMed ID: 11687489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-amplitude coupling for stable biological rhythms at different temperatures.
    Kurosawa G; Fujioka A; Koinuma S; Mochizuki A; Shigeyoshi Y
    PLoS Comput Biol; 2017 Jun; 13(6):e1005501. PubMed ID: 28594845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature compensation and entrainment in circadian rhythms.
    Bodenstein C; Heiland I; Schuster S
    Phys Biol; 2012 Jun; 9(3):036011. PubMed ID: 22683844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian timing mechanism in the prokaryotic clock system of cyanobacteria.
    Iwasaki H; Kondo T
    J Biol Rhythms; 2004 Oct; 19(5):436-44. PubMed ID: 15534323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating activation energies for temperature compensation in circadian rhythms.
    Bodenstein C; Heiland I; Schuster S
    Phys Biol; 2011 Oct; 8(5):056007. PubMed ID: 21891835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles.
    Takeuchi T; Hinohara T; Kurosawa G; Uchida K
    J Theor Biol; 2007 May; 246(1):195-204. PubMed ID: 17275853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of computational models for mammalian circadian oscillators.
    Forger DB; Dean DA; Gurdziel K; Leloup JC; Lee C; Von Gall C; Etchegaray JP; Kronauer RE; Goldbeter A; Peskin CS; Jewett ME; Weaver DR
    OMICS; 2003; 7(4):387-400. PubMed ID: 14683611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-compensated chemical reactions.
    Rajan K; Abbott LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):022902. PubMed ID: 17358384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mRNA amount.
    Jacobshagen S; Kessler B; Rinehart CA
    J Biol Rhythms; 2008 Dec; 23(6):511-24. PubMed ID: 19060260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature.
    Varma V; Mukherjee N; Kannan NN; Sharma VK
    J Biol Rhythms; 2013 Dec; 28(6):380-9. PubMed ID: 24336416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythms: new functions for old clock genes.
    Lakin-Thomas PL
    Trends Genet; 2000 Mar; 16(3):135-42. PubMed ID: 10689355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.