BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30712787)

  • 1. Identification and characterization of an M cell marker in nasopharynx- and oropharynx-associated lymphoid tissue of sheep.
    Saxena VK; Diaz A; Scheerlinck JY
    Vet Immunol Immunopathol; 2019 Feb; 208():1-5. PubMed ID: 30712787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RANKL regulates differentiation of microfold cells in mouse nasopharynx-associated lymphoid tissue (NALT).
    Mutoh M; Kimura S; Takahashi-Iwanaga H; Hisamoto M; Iwanaga T; Iida J
    Cell Tissue Res; 2016 Apr; 364(1):175-84. PubMed ID: 26553655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NALT M cells are important for immune induction for the common mucosal immune system.
    Date Y; Ebisawa M; Fukuda S; Shima H; Obata Y; Takahashi D; Kato T; Hanazato M; Nakato G; Williams IR; Hase K; Ohno H
    Int Immunol; 2017 Dec; 29(10):471-478. PubMed ID: 29186424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of ovine nasal-associated lymphoid tissue and identification of M cells in the overlying follicle-associated epithelium.
    Stanley AC; Huntley JF; Jeffrey M; Buxton D
    J Comp Pathol; 2001 Nov; 125(4):262-70. PubMed ID: 11798243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A streptococcus.
    Park HS; Francis KP; Yu J; Cleary PP
    J Immunol; 2003 Sep; 171(5):2532-7. PubMed ID: 12928403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of M cells in infection and mucosal vaccines.
    Wang M; Gao Z; Zhang Z; Pan L; Zhang Y
    Hum Vaccin Immunother; 2014; 10(12):3544-51. PubMed ID: 25483705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune functions of nasopharyngeal lymphoid tissue.
    Brandtzaeg P
    Adv Otorhinolaryngol; 2011; 72():20-4. PubMed ID: 21865681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Waldeyer's ring.
    Hellings P; Jorissen M; Ceuppens JL
    Acta Otorhinolaryngol Belg; 2000; 54(3):237-41. PubMed ID: 11082757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways.
    Brandtzaeg P
    Am J Respir Crit Care Med; 2011 Jun; 183(12):1595-604. PubMed ID: 21471092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans.
    Fujimura Y
    Virchows Arch; 2000 Jun; 436(6):560-6. PubMed ID: 10917169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines.
    Mullin J; Ahmed MS; Sharma R; Upile N; Beer H; Achar P; Puksuriwong S; Ferrara F; Temperton N; McNamara P; Lambe T; Gilbert SC; Zhang Q
    Vaccine; 2016 Mar; 34(14):1688-95. PubMed ID: 26902548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological characteristics and stereological volume assessment of the ovine tonsils.
    Casteleyn C; Van den Broeck W; Simoens P
    Vet Immunol Immunopathol; 2007 Dec; 120(3-4):124-35. PubMed ID: 17727965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of nasopharynx-associated lymphoid tissue (NALT) in the development of allergic responses in an allergic rhinitis mouse model.
    Kim DY; Fukuyama S; Nagatake T; Takamura K; Kong IG; Yokota Y; Lee CH; Kiyono H
    Allergy; 2012 Apr; 67(4):502-9. PubMed ID: 22257110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between the ovine tonsils based on an immunohistochemical quantification of the lymphocyte subpopulations.
    Breugelmans S; De Spiegelaere W; Casteleyn C; Simoens P; Van den Broeck W
    Comp Immunol Microbiol Infect Dis; 2011 May; 34(3):217-25. PubMed ID: 21130496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity.
    Ohno H; Hase K
    Gut Microbes; 2010; 1(6):407-10. PubMed ID: 21468225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural investigation of M-cells and lymphoepithelial contacts in naso-pharyngeal associated lymphoid tissue (NALT).
    Claeys S; Cuvelier C; Quatacker J; Van Cauwenberge P
    Acta Otolaryngol Suppl; 1996; 523():40-2. PubMed ID: 9082806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway M Cells Arise in the Lower Airway Due to RANKL Signaling and Reside in the Bronchiolar Epithelium Associated With iBALT in Murine Models of Respiratory Disease.
    Kimura S; Mutoh M; Hisamoto M; Saito H; Takahashi S; Asakura T; Ishii M; Nakamura Y; Iida J; Hase K; Iwanaga T
    Front Immunol; 2019; 10():1323. PubMed ID: 31244859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of Tonsillar Mononuclear Cells to Study Ex Vivo Innate Immune Responses in a Human Mucosal Lymphoid Tissue.
    Smith N; Bekaddour N; Leboulanger N; Richard Y; Herbeuval JP
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32597837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological and ultrastructural examinations of porcine tonsils.
    Liu Z; Yu Q; Li P; Yang Q
    Anat Rec (Hoboken); 2012 Apr; 295(4):686-90. PubMed ID: 22190355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lectin binding patterns in rat nasal-associated lymphoid tissue (NALT) and the influence of various types of lectin on particle uptake in NALT.
    Takata S; Ohtani O; Watanabe Y
    Arch Histol Cytol; 2000 Oct; 63(4):305-12. PubMed ID: 11073062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.