These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 30713111)

  • 1. Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations.
    Adebayo Michael AO; Ko S; Tao J; Moghe A; Yang H; Xu M; Russell JO; Pradhan-Sundd T; Liu S; Singh S; Poddar M; Monga JS; Liu P; Oertel M; Ranganathan S; Singhi A; Rebouissou S; Zucman-Rossi J; Ribback S; Calvisi D; Qvartskhava N; Görg B; Häussinger D; Chen X; Monga SP
    Cell Metab; 2019 May; 29(5):1135-1150.e6. PubMed ID: 30713111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-Asparaginase and inhibitors of glutamine synthetase disclose glutamine addiction of β-catenin-mutated human hepatocellular carcinoma cells.
    Tardito S; Chiu M; Uggeri J; Zerbini A; Da Ros F; Dall'Asta V; Missale G; Bussolati O
    Curr Cancer Drug Targets; 2011 Oct; 11(8):929-43. PubMed ID: 21834755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1.
    Dai W; Shen J; Yan J; Bott AJ; Maimouni S; Daguplo HQ; Wang Y; Khayati K; Guo JY; Zhang L; Wang Y; Valvezan A; Ding WX; Chen X; Su X; Gao S; Zong WX
    J Clin Invest; 2022 Dec; 132(24):. PubMed ID: 36256480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma.
    Austinat M; Dunsch R; Wittekind C; Tannapfel A; Gebhardt R; Gaunitz F
    Mol Cancer; 2008 Feb; 7():21. PubMed ID: 18282277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation.
    Abitbol S; Dahmani R; Coulouarn C; Ragazzon B; Mlecnik B; Senni N; Savall M; Bossard P; Sohier P; Drouet V; Tournier E; Dumont F; Sanson R; Calderaro J; Zucman-Rossi J; Vasseur-Cognet M; Just PA; Terris B; Perret C; Gilgenkrantz H
    J Hepatol; 2018 Jun; 68(6):1203-1213. PubMed ID: 29525529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer.
    Elmetwalli A; Nageh A; Youssef AI; Youssef M; Ahmed MAE; Noreldin AE; El-Sewedy T
    Med Oncol; 2023 Dec; 41(1):38. PubMed ID: 38157146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine synthetase and hepatocellular carcinoma.
    Jiang J; Hu Y; Fang D; Luo J
    Clin Res Hepatol Gastroenterol; 2023 Dec; 47(10):102248. PubMed ID: 37979911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatocyte β-catenin loss is compensated by Insulin-mTORC1 activation to promote liver regeneration.
    Hu S; Cao C; Poddar M; Delgado E; Singh S; Singh-Varma A; Stolz DB; Bell A; Monga SP
    Hepatology; 2023 May; 77(5):1593-1611. PubMed ID: 35862186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation.
    Lee JM; Yang J; Newell P; Singh S; Parwani A; Friedman SL; Nejak-Bowen KN; Monga SP
    Cancer Lett; 2014 Feb; 343(1):90-7. PubMed ID: 24071572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice.
    Braeuning A; Singh Y; Rignall B; Buchmann A; Hammad S; Othman A; von Recklinghausen I; Godoy P; Hoehme S; Drasdo D; Hengstler JG; Schwarz M
    Histochem Cell Biol; 2010 Nov; 134(5):469-81. PubMed ID: 20886225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features.
    Zhu C; Ho YJ; Salomao MA; Dapito DH; Bartolome A; Schwabe RF; Lee JS; Lowe SW; Pajvani UB
    J Hepatol; 2021 Mar; 74(3):613-626. PubMed ID: 33038431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma.
    Toh TB; Lim JJ; Hooi L; Rashid MBMA; Chow EK
    J Hepatol; 2020 Jan; 72(1):104-118. PubMed ID: 31541681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamine synthetase mediates sorafenib sensitivity in β-catenin-active hepatocellular carcinoma cells.
    Sohn BH; Park IY; Shin JH; Yim SY; Lee JS
    Exp Mol Med; 2018 Jan; 50(1):e421. PubMed ID: 29303508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing β-catenin.
    Fatima S; Shi X; Lin Z; Chen GQ; Pan XH; Wu JC; Ho JW; Lee NP; Gao H; Zhang G; Lu A; Bian ZX
    Mol Oncol; 2016 Feb; 10(2):195-212. PubMed ID: 26474915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal regulation of liver development by the Wnt/β-catenin pathway.
    Burke ZD; Reed KR; Yeh SW; Meniel V; Sansom OJ; Clarke AR; Tosh D
    Sci Rep; 2018 Feb; 8(1):2735. PubMed ID: 29426940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells.
    Ma L; Wang X; Jia T; Wei W; Chua MS; So S
    Oncotarget; 2015 Sep; 6(28):25390-401. PubMed ID: 26246473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear factor erythroid 2-related factor 2 and β-Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications.
    Tao J; Krutsenko Y; Moghe A; Singh S; Poddar M; Bell A; Oertel M; Singhi AD; Geller D; Chen X; Lujambio A; Liu S; Monga SP
    Hepatology; 2021 Aug; 74(2):741-759. PubMed ID: 33529367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice.
    Tao J; Zhang R; Singh S; Poddar M; Xu E; Oertel M; Chen X; Ganesh S; Abrams M; Monga SP
    Hepatology; 2017 May; 65(5):1581-1599. PubMed ID: 27981621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice.
    Chen X; Wang Y; Tao J; Shi Y; Gai X; Huang F; Ma Q; Zhou Z; Chen H; Zhang H; Liu Z; Sun Q; Peng H; Chen R; Jing Y; Yang H; Mao Y; Zhang H
    Gastroenterology; 2015 Sep; 149(3):741-52.e14. PubMed ID: 25980751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts.
    Chiu M; Tardito S; Pillozzi S; Arcangeli A; Armento A; Uggeri J; Missale G; Bianchi MG; Barilli A; Dall'Asta V; Campanini N; Silini EM; Fuchs J; Armeanu-Ebinger S; Bussolati O
    Br J Cancer; 2014 Sep; 111(6):1159-67. PubMed ID: 25072259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.