BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 30713215)

  • 21. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders.
    van den Berg MMJ; Krauskopf J; Ramaekers JG; Kleinjans JCS; Prickaerts J; Briedé JJ
    Prog Neurobiol; 2020 Feb; 185():101732. PubMed ID: 31816349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Pilot Study of Ex Vivo Human Prefrontal RNA Transcriptomics in Parkinson's Disease.
    Lin LC; Cole RC; Greenlee JDW; Narayanan NS
    Cell Mol Neurobiol; 2023 Aug; 43(6):3037-3046. PubMed ID: 36952070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The lncRNAs involved in regulating the RIG-I signaling pathway.
    Liu J; Ji Q; Cheng F; Chen D; Geng T; Huang Y; Zhang J; He Y; Song T
    Front Cell Infect Microbiol; 2022; 12():1041682. PubMed ID: 36439216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse.
    Heng Y; Li YY; Wen L; Yan JQ; Chen NH; Yuan YH
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson's and Alzheimer's Disease.
    Rai SN; Tiwari N; Singh P; Singh AK; Mishra D; Imran M; Singh S; Hooshmandi E; Vamanu E; Singh SK; Singh MP
    Oxid Med Cell Longev; 2022; 2022():3012778. PubMed ID: 36092161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel LINC00943/miR-671-5p/ELAVL1 ceRNA crosstalk regulates MPP
    Zhang X; Luan N; Shi J
    Metab Brain Dis; 2022 Oct; 37(7):2349-2362. PubMed ID: 35779150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small Molecule Regulators of Ferroptosis.
    Debieu S; Solier S; Colombeau L; Versini A; Sindikubwabo F; Forrester A; Müller S; Cañeque T; Rodriguez R
    Adv Exp Med Biol; 2021; 1301():81-121. PubMed ID: 34370289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease.
    Lyu Y; Huang Y; Shi G; Lei X; Li K; Zhou R; Bai L; Qin C
    CNS Neurosci Ther; 2021 Nov; 27(11):1289-1299. PubMed ID: 34347369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can Circulating microRNAs Identify Sudden Unexpected Death in Parkinson's Disease ?
    Ramaswamy P; Yadav R; Pal PK; Christopher R
    Ann Indian Acad Neurol; 2021; 24(2):290-291. PubMed ID: 34220093
    [No Abstract]   [Full Text] [Related]  

  • 30. Emerging COVID-19 Neurological Manifestations: Present Outlook and Potential Neurological Challenges in COVID-19 Pandemic.
    Dewanjee S; Vallamkondu J; Kalra RS; Puvvada N; Kandimalla R; Reddy PH
    Mol Neurobiol; 2021 Sep; 58(9):4694-4715. PubMed ID: 34169443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parkinson mice show functional and molecular changes in the gut long before motoric disease onset.
    Gries M; Christmann A; Schulte S; Weyland M; Rommel S; Martin M; Baller M; Röth R; Schmitteckert S; Unger M; Liu Y; Sommer F; Mühlhaus T; Schroda M; Timmermans JP; Pintelon I; Rappold GA; Britschgi M; Lashuel H; Menger MD; Laschke MW; Niesler B; Schäfer KH
    Mol Neurodegener; 2021 Jun; 16(1):34. PubMed ID: 34078425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long Non-coding RNAs in Parkinson's Disease.
    Xin C; Liu J
    Neurochem Res; 2021 May; 46(5):1031-1042. PubMed ID: 33544326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemically Induced Models of Parkinson's Disease: History and Perspectives for the Involvement of Ferroptosis.
    Wen S; Aki T; Unuma K; Uemura K
    Front Cell Neurosci; 2020; 14():581191. PubMed ID: 33424553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson's Disease: An Insight Into Role of Pharmacological Interventions.
    Vaidya B; Sharma SS
    Front Cell Dev Biol; 2020; 8():584513. PubMed ID: 33330461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome sequencing reveals aerobic exercise training-associated lncRNAs for improving Parkinson's disease.
    Zhang X; Wang Y; Zhao Z; Chen X; Li W; Li X
    3 Biotech; 2020 Nov; 10(11):498. PubMed ID: 33150124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson's Disease.
    Chaná-Cuevas P; Salles-Gándara P; Rojas-Fernandez A; Salinas-Rebolledo C; Milán-Solé A
    Front Neurol; 2020; 11():1044. PubMed ID: 33041985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression.
    Wang Z; Wang X; Zou H; Dai Z; Feng S; Zhang M; Xiao G; Liu Z; Cheng Q
    Front Immunol; 2020; 11():1757. PubMed ID: 33013829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Long Noncoding RNAs in Parkinson's Disease: Putative Biomarkers and Therapeutic Targets.
    Lv Q; Wang Z; Zhong Z; Huang W
    Parkinsons Dis; 2020; 2020():5374307. PubMed ID: 32617144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long noncoding RNAs in neurodevelopment and Parkinson's disease.
    Lyu Y; Bai L; Qin C
    Animal Model Exp Med; 2019 Dec; 2(4):239-251. PubMed ID: 31942556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson's disease.
    Li J; Sun Y; Chen J
    Genes Genet Syst; 2019 Apr; 94(2):61-69. PubMed ID: 30713215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.