These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30713219)

  • 1. Amplification of Sensor Signals from Metal Mesh Device with Fine Periodic Structure.
    Seto H; Saiki A; Kamba S; Kondo T; Hasegawa M; Miura Y; Hirohashi Y; Shinto H
    Anal Sci; 2019 Jun; 35(6):619-623. PubMed ID: 30713219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Measurement of Protein Using Metal Mesh Device.
    Kamba S; Seto H; Kondo T; Miura Y
    Anal Sci; 2017; 33(9):1033-1039. PubMed ID: 28890487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal mesh device sensor immobilized with a trimethoxysilane-containing glycopolymer for label-free detection of proteins and bacteria.
    Seto H; Kamba S; Kondo T; Hasegawa M; Nashima S; Ehara Y; Ogawa Y; Hoshino Y; Miura Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13234-41. PubMed ID: 25014128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating Detectable Optical Domain in Sensing Technology Using Metal Mesh Devices and Detection of Submicron-size Particles.
    Kamba S; Seto H; Kondo T; Miura Y
    Anal Sci; 2018; 34(5):547-552. PubMed ID: 29743425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free THz sensing of living body-related molecular binding using a metallic mesh.
    Hasebe T; Yamada Y; Tabata H
    Biochem Biophys Res Commun; 2011 Oct; 414(1):192-8. PubMed ID: 21946066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification of the Universal Versatility of a Quantitative Protein Measurement Technique Using a Metal Mesh Device.
    Kamba S; Seto H; Kondo T; Miura Y
    Anal Sci; 2018; 34(7):765-770. PubMed ID: 29998956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free detection of antigen protein using a metal mesh device surface-modified by an antibody.
    Seto H; Kamba S; Kondo T; Ogawa Y; Hoshino Y; Miura Y
    Anal Sci; 2015; 31(3):173-6. PubMed ID: 25765271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotinylation of silicon and nickel surfaces and detection of streptavidin as biosensor.
    Seto H; Yamashita C; Kamba S; Kondo T; Hasegawa M; Matsuno M; Ogawa Y; Hoshino Y; Miura Y
    Langmuir; 2013 Jul; 29(30):9457-63. PubMed ID: 23808479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Characteristics of a Touch Sensor by Controlling the Multi-Layer Architecture of a Low-Cost Metal Mesh Pattern.
    Kwak SH; Kwak MG; Ju BK; Hong SJ
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7645-51. PubMed ID: 26726389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Characteristics of Double Layered Plasmonic Structure Using Nanopatterning Process.
    Kim DG; Kim SH; Ki HC; Kim TU; Kim HS; Choi YW; Jo MH; Shin JC
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1913-1916. PubMed ID: 29448682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor.
    Li F; Kosel J
    Biosens Bioelectron; 2014 Sep; 59():145-50. PubMed ID: 24727202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embedded Ag/Ni Metal-Mesh with Low Surface Roughness As Transparent Conductive Electrode for Optoelectronic Applications.
    Chen X; Guo W; Xie L; Wei C; Zhuang J; Su W; Cui Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37048-37054. PubMed ID: 28967742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays.
    Rao L; Yang D; Zhang L; Li T; Xia S
    Appl Opt; 2012 Mar; 51(7):912-6. PubMed ID: 22410895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.
    Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH
    Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic mesh devices-based terahertz parallel-plate resonators: characteristics and applications.
    Wang C; Li X; Huang Y; Xu W; Zhou R; Wang R; Xie L; Ying Y
    Opt Express; 2018 Sep; 26(19):24992-25002. PubMed ID: 30469607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon.
    Chen X; Fan W
    Sci Rep; 2017 May; 7(1):2092. PubMed ID: 28522859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.
    Heywood SL; Glavin BA; Beardsley RP; Akimov AV; Carr MW; Norman J; Norton PC; Prime B; Priestley N; Kent AJ
    Sci Rep; 2016 Aug; 6():30396. PubMed ID: 27477841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a functionalized xenon biosensor.
    Spence MM; Ruiz EJ; Rubin SM; Lowery TJ; Winssinger N; Schultz PG; Wemmer DE; Pines A
    J Am Chem Soc; 2004 Nov; 126(46):15287-94. PubMed ID: 15548026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.