These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Singh P; Bodycomb J; Travers B; Tatarkiewicz K; Travers S; Matyas GR; Beck Z Int J Pharm; 2019 Jul; 566():680-686. PubMed ID: 31176851 [TBL] [Abstract][Full Text] [Related]
4. Analytical considerations for measuring the globule size distribution of cyclosporine ophthalmic emulsions. Petrochenko PE; Pavurala N; Wu Y; Yee Wong S; Parhiz H; Chen K; Patil SM; Qu H; Buoniconti P; Muhammad A; Choi S; Kozak D; Ashraf M; Cruz CN; Zheng J; Xu X Int J Pharm; 2018 Oct; 550(1-2):229-239. PubMed ID: 30125649 [TBL] [Abstract][Full Text] [Related]
5. Characterization of doxorubicin liposomal formulations for size-based distribution of drug and excipients using asymmetric-flow field-flow fractionation (AF4) and liquid chromatography-mass spectrometry (LC-MS). Ansar SM; Mudalige T Int J Pharm; 2020 Jan; 574():118906. PubMed ID: 31805309 [TBL] [Abstract][Full Text] [Related]
6. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches. Barnett GV; Perhacs JM; Das TK; Kar SR Pharm Res; 2018 Feb; 35(3):58. PubMed ID: 29423663 [TBL] [Abstract][Full Text] [Related]
7. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering. Makan AC; Spallek MJ; du Toit M; Klein T; Pasch H J Chromatogr A; 2016 Apr; 1442():94-106. PubMed ID: 26987415 [TBL] [Abstract][Full Text] [Related]
8. A robust and easily reproducible protocol for the determination of size and size distribution of iron sucrose using dynamic light scattering. Di Francesco T; Borchard G J Pharm Biomed Anal; 2018 Apr; 152():89-93. PubMed ID: 29414023 [TBL] [Abstract][Full Text] [Related]
9. Pitfalls and novel applications of particle sizing by dynamic light scattering. Fischer K; Schmidt M Biomaterials; 2016 Aug; 98():79-91. PubMed ID: 27179435 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Tunable Resistive Pulse Sensing (TRPS) Technology for Particle Size Distribution in Vaccine Formulations - A Comparative Study with Dynamic Light Scattering. Misra R; Fung G; Sharma S; Hu J; Kirkitadze M Pharm Res; 2024 May; 41(5):1021-1029. PubMed ID: 38649535 [TBL] [Abstract][Full Text] [Related]
11. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. Peretz Damari S; Shamrakov D; Varenik M; Koren E; Nativ-Roth E; Barenholz Y; Regev O Int J Pharm; 2018 Aug; 547(1-2):648-655. PubMed ID: 29913218 [TBL] [Abstract][Full Text] [Related]
12. Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm. Varenne F; Botton J; Merlet C; Hillaireau H; Legrand FX; Barratt G; Vauthier C Int J Pharm; 2016 Dec; 515(1-2):245-253. PubMed ID: 27725269 [TBL] [Abstract][Full Text] [Related]
13. Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Svetlichny G; Külkamp-Guerreiro IC; Cunha SL; Silva FE; Bueno K; Pohlmann AR; Fuentefria AM; Guterres SS Pharmazie; 2015 Mar; 70(3):155-64. PubMed ID: 25980176 [TBL] [Abstract][Full Text] [Related]
14. Stability and drug release studies of an antimycotic nanomedicine using HPLC, dynamic light scattering and atomic force microscopy. Watanabe A; Takagi M; Murata S; Kato M J Pharm Biomed Anal; 2018 Jan; 148():149-155. PubMed ID: 29028561 [TBL] [Abstract][Full Text] [Related]
15. Characterization of different vitamin E carriers intended for pulmonary drug delivery. Laouini A; Andrieu V; Vecellio L; Fessi H; Charcosset C Int J Pharm; 2014 Aug; 471(1-2):385-90. PubMed ID: 24939617 [TBL] [Abstract][Full Text] [Related]
16. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122 [TBL] [Abstract][Full Text] [Related]
17. A novel procedure for preparation of submicron liposomes-lyophilization of oil-in-water emulsions. Wang T; Wang N; Jin X; Zhang K; Li T J Liposome Res; 2009; 19(3):231-40. PubMed ID: 19263267 [TBL] [Abstract][Full Text] [Related]
18. Preparation and structure of a water-in-oil cream containing lipid nanoparticles. de Vringer T; de Ronde HA J Pharm Sci; 1995 Apr; 84(4):466-72. PubMed ID: 7629738 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Shekunov BY; Chattopadhyay P; Seitzinger J; Huff R Pharm Res; 2006 Jan; 23(1):196-204. PubMed ID: 16307386 [TBL] [Abstract][Full Text] [Related]
20. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Chattopadhyay P; Shekunov BY; Yim D; Cipolla D; Boyd B; Farr S Adv Drug Deliv Rev; 2007 Jul; 59(6):444-53. PubMed ID: 17582648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]