These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 30713267)
1. Investigation of the Lipid Changes That Occur in Hypertrophic Muscle due to Fish Protein-feeding Using Mass Spectrometry Imaging. Morisasa M; Goto-Inoue N; Sato T; Machida K; Fujitani M; Kishida T; Uchida K; Mori T J Oleo Sci; 2019; 68(2):141-148. PubMed ID: 30713267 [TBL] [Abstract][Full Text] [Related]
2. Fast-twitch muscle hypertrophy partly induces lipid accumulation inhibition with Alaska pollack protein intake in rats. Mizushige T; Kawabata F; Uozumi K; Tsuji T; Kishida T; Ebihara K Biomed Res; 2010 Dec; 31(6):347-52. PubMed ID: 21187645 [TBL] [Abstract][Full Text] [Related]
3. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats. Kawabata F; Mizushige T; Uozumi K; Hayamizu K; Han L; Tsuji T; Kishida T Biosci Biotechnol Biochem; 2015; 79(1):109-16. PubMed ID: 25198797 [TBL] [Abstract][Full Text] [Related]
4. Dietary Alaska Pollack Protein Induces Acute and Sustainable Skeletal Muscle Hypertrophy in Rats. Uchida K; Fujitani M; Mizushige T; Kawabata F; Hayamizu K; Uozumi K; Hara Y; Sawai M; Uehigashi R; Okada S; Goto-Inoue N; Morisasa M; Kishida T Nutrients; 2022 Jan; 14(3):. PubMed ID: 35276908 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298 [TBL] [Abstract][Full Text] [Related]
6. Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Bahreinipour MA; Joukar S; Hovanloo F; Najafipour H; Naderi V; Rajiamirhasani A; Esmaeili-Mahani S Life Sci; 2018 Jun; 202():103-109. PubMed ID: 29604268 [TBL] [Abstract][Full Text] [Related]
8. Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Goto-Inoue N; Manabe Y; Miyatake S; Ogino S; Morishita A; Hayasaka T; Masaki N; Setou M; Fujii NL Anal Bioanal Chem; 2012 Jun; 403(7):1863-71. PubMed ID: 22349342 [TBL] [Abstract][Full Text] [Related]
9. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. Shi H; Scheffler JM; Pleitner JM; Zeng C; Park S; Hannon KM; Grant AL; Gerrard DE FASEB J; 2008 Aug; 22(8):2990-3000. PubMed ID: 18417546 [TBL] [Abstract][Full Text] [Related]
10. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero. Downie D; Delday MI; Maltin CA; Sneddon AA Mol Reprod Dev; 2008 May; 75(5):785-94. PubMed ID: 17948249 [TBL] [Abstract][Full Text] [Related]
11. Exercise attenuates the fasting-induced transcriptional activation of metabolic genes in skeletal muscle. Hildebrandt AL; Neufer PD Am J Physiol Endocrinol Metab; 2000 Jun; 278(6):E1078-86. PubMed ID: 10827011 [TBL] [Abstract][Full Text] [Related]
12. Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle. Tiao G; Lieberman M; Fischer JE; Hasselgren PO Am J Physiol; 1997 Mar; 272(3 Pt 2):R849-56. PubMed ID: 9087646 [TBL] [Abstract][Full Text] [Related]
13. Fish Protein Promotes Skeletal Muscle Hypertrophy via the Akt/mTOR Signaling Pathways. Morisasa M; Yoshida E; Fujitani M; Kimura K; Uchida K; Kishida T; Mori T; Goto-Inoue N J Nutr Sci Vitaminol (Tokyo); 2022; 68(1):23-31. PubMed ID: 35228492 [TBL] [Abstract][Full Text] [Related]
14. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. Lynch CJ; Xu Y; Hajnal A; Salzberg AC; Kawasawa YI PLoS One; 2015; 10(4):e0123966. PubMed ID: 25893406 [TBL] [Abstract][Full Text] [Related]
15. Muscle type dependent increase in intramyocellular lipids during prolonged fasting of human subjects: a proton MRS study. Wietek BM; Machann J; Mader I; Thamer C; Häring HU; Claussen CD; Stumvoll M; Schick F Horm Metab Res; 2004 Sep; 36(9):639-44. PubMed ID: 15486816 [TBL] [Abstract][Full Text] [Related]
16. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition. Stark KD; Lim SY; Salem N Lipids Health Dis; 2007 Apr; 6():13. PubMed ID: 17459159 [TBL] [Abstract][Full Text] [Related]
17. Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. Thomson DM; Gordon SE J Appl Physiol (1985); 2005 Feb; 98(2):557-64. PubMed ID: 15465886 [TBL] [Abstract][Full Text] [Related]
18. Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Lionikas A; Blizard DA; Vandenbergh DJ; Glover MG; Stout JT; Vogler GP; McClearn GE; Larsson L Physiol Genomics; 2003 Dec; 16(1):141-52. PubMed ID: 14679300 [TBL] [Abstract][Full Text] [Related]
19. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. Acevedo LM; Raya AI; Ríos R; Aguilera-Tejero E; Rivero JL J Appl Physiol (1985); 2017 Jul; 123(1):249-259. PubMed ID: 28522764 [TBL] [Abstract][Full Text] [Related]
20. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. Ciapaite J; van den Berg SA; Houten SM; Nicolay K; van Dijk KW; Jeneson JA J Nutr Biochem; 2015 Feb; 26(2):155-64. PubMed ID: 25516489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]