These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30713354)

  • 1. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Feb; 224():25-36. PubMed ID: 30713354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics.
    Mishchenko MI
    Appl Opt; 2002 Nov; 41(33):7114-34. PubMed ID: 12463259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field.
    Mishchenko MI
    Opt Express; 2008 Feb; 16(3):2288-301. PubMed ID: 18542308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hadronic bound states in SU(2) from Dyson-Schwinger equations.
    Vujinovic M; Williams R
    Eur Phys J C Part Fields; 2015; 75(3):100. PubMed ID: 25995703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic scattering by discrete random media. II: The coherent field.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Jun; 230():86-105. PubMed ID: 31186585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic scattering by spheroidal volumes of discrete random medium.
    Mishchenko MI; Dlugach JM
    J Quant Spectrosc Radiat Transf; 2017 Oct; 200():244-248. PubMed ID: 29622840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative energy transfer in disordered photonic crystals.
    Erementchouk MV; Deych LI; Noh H; Cao H; Lisyansky AA
    J Phys Condens Matter; 2009 Apr; 21(17):175401. PubMed ID: 21825416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixed scatterer in a random medium: shadowing, enhanced backscattering, and the inner structure of the Bethe-Salpeter equation.
    Furutsu K
    Appl Opt; 1993 May; 32(15):2706-21. PubMed ID: 20820433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-frequency radiative transfer: Maxwell equations in random dielectrics.
    Fannjiang AC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3680-90. PubMed ID: 18059920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative transfer in a discrete random medium adjacent to a half-space with a rough interface.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2018 Oct; 218():194-202. PubMed ID: 30504992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastodynamic wave scattering by finite-sized resonant scatterers at the surface of a horizontally layered halfspace.
    Lombaert G; Clouteau D
    J Acoust Soc Am; 2009 Apr; 125(4):2041-52. PubMed ID: 19354380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poynting-Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm.
    Mishchenko MI
    Opt Express; 2010 Sep; 18(19):19770-91. PubMed ID: 20940872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian Z-vector approach to Bethe-Salpeter analytic gradients: Assessing approximations.
    Villalobos-Castro J; Knysh I; Jacquemin D; Duchemin I; Blase X
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A formally exact one-frequency-only Bethe-Salpeter-like equation. Similarities and differences between GW+BSE and self-consistent RPA.
    Olevano V; Toulouse J; Schuck P
    J Chem Phys; 2019 Feb; 150(8):084112. PubMed ID: 30823767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impressed sources and fields in the volume-integral-equation formulation of electromagnetic scattering by a finite object: a tutorial.
    Mishchenko MI; Yurkin MA
    J Quant Spectrosc Radiat Transf; 2018 Jul; 214():158-167. PubMed ID: 30082926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bethe-Salpeter QED Wave Equation for Bound-State Computations of Atoms and Molecules.
    Mátyus E; Ferenc D; Jeszenszki P; Margócsy Á
    ACS Phys Chem Au; 2023 May; 3(3):222-240. PubMed ID: 37249939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sketching the Bethe-Salpeter kernel.
    Chang L; Roberts CD
    Phys Rev Lett; 2009 Aug; 103(8):081601. PubMed ID: 19792713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of electric field frequency correlations for randomly scattering slabs in the nondiffusive regime with the scalar Bethe-Salpeter equation.
    Gaind V; San AK; Lin D; Webb KJ
    Opt Lett; 2014 Jan; 39(1):1-4. PubMed ID: 24365806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation transfer equation for ultrasound-modulated multiply scattered light.
    Sakadzić S; Wang LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036618. PubMed ID: 17025775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.