These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30713590)
1. Quantifying Double-Layer Potentials at Liquid-Gas Interfaces from Vibrational Sum-Frequency Generation. García Rey N; Weißenborn E; Schulze-Zachau F; Gochev G; Braunschweig B J Phys Chem C Nanomater Interfaces; 2019 Jan; 123(2):1279-1286. PubMed ID: 30713590 [TBL] [Abstract][Full Text] [Related]
2. Ion Pairing and Adsorption of Azo Dye/C Streubel S; Schulze-Zachau F; Weißenborn E; Braunschweig B J Phys Chem C Nanomater Interfaces; 2017 Dec; 121(50):27992-28000. PubMed ID: 29285205 [TBL] [Abstract][Full Text] [Related]
3. A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy. Goussous SA; Casford MTL; Johnson SA; Davies PB J Colloid Interface Sci; 2017 Feb; 488():365-372. PubMed ID: 27846410 [TBL] [Abstract][Full Text] [Related]
4. Combined Sum Frequency Generation and Thin Liquid Film Study of the Specific Effect of Monovalent Cations on the Interfacial Water Structure. Shahir AA; Khristov K; Nguyen KT; Nguyen AV; Mileva E Langmuir; 2018 Jun; 34(23):6844-6855. PubMed ID: 29775317 [TBL] [Abstract][Full Text] [Related]
5. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces. Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773 [TBL] [Abstract][Full Text] [Related]
6. Interfacial Water Features at Air-Water Interfaces as Influenced by Charged Surfactants. Truong VNT; Wang X; Dang LX; Miller JD J Phys Chem B; 2019 Mar; 123(10):2397-2404. PubMed ID: 30767526 [TBL] [Abstract][Full Text] [Related]
7. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Wang J; Chen X; Clarke ML; Chen Z Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4978-83. PubMed ID: 15793004 [TBL] [Abstract][Full Text] [Related]
8. Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface. Shi L; McMillan JR; Yu D; Chen X; Tucker CJ; Wasserman E; Mohler C; Chen Z Langmuir; 2021 Sep; 37(36):10806-10817. PubMed ID: 34455791 [TBL] [Abstract][Full Text] [Related]
9. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Jubb AM; Hua W; Allen HC Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822 [TBL] [Abstract][Full Text] [Related]
10. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. Ni Y; Skinner JL J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483 [TBL] [Abstract][Full Text] [Related]
11. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Chen Z Prog Polym Sci; 2010 Nov; 35(11):1376-1402. PubMed ID: 21113334 [TBL] [Abstract][Full Text] [Related]
12. Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid-Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations. Sulpizi M; Salanne M; Sprik M; Gaigeot MP J Phys Chem Lett; 2013 Jan; 4(1):83-7. PubMed ID: 26291216 [TBL] [Abstract][Full Text] [Related]
13. Observation of the Bending Mode of Interfacial Water at Silica Surfaces by Near-Infrared Vibrational Sum-Frequency Generation Spectroscopy of the [Stretch + Bend] Combination Bands. Isaienko O; Nihonyanagi S; Sil D; Borguet E J Phys Chem Lett; 2013 Feb; 4(3):531-5. PubMed ID: 26281750 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of 1- and 2-butylimidazoles at the copper/air and steel/air interfaces studied by sum frequency generation vibrational spectroscopy. Casford MT; Davies PB Langmuir; 2012 Jul; 28(29):10741-8. PubMed ID: 22703375 [TBL] [Abstract][Full Text] [Related]
15. C Schulze-Zachau F; Braunschweig B Phys Chem Chem Phys; 2019 Apr; 21(15):7847-7856. PubMed ID: 30916092 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics analysis of interfacial structures and sum frequency generation spectra of aqueous hydrogen halide solutions. Ishiyama T; Morita A J Phys Chem A; 2007 Sep; 111(38):9277-85. PubMed ID: 17705456 [TBL] [Abstract][Full Text] [Related]
17. Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy. Nguyen KT; Nguyen AV Phys Chem Chem Phys; 2015 Nov; 17(43):28534-8. PubMed ID: 26457564 [TBL] [Abstract][Full Text] [Related]
18. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy. Ding B; Jasensky J; Li Y; Chen Z Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920 [TBL] [Abstract][Full Text] [Related]
19. Interference effects in the sum frequency generation spectra of thin organic films. II: Applications to different thin-film systems. Tong Y; Zhao Y; Li N; Ma Y; Osawa M; Davies PB; Ye S J Chem Phys; 2010 Jul; 133(3):034705. PubMed ID: 20649348 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the double layer structure of 1-butyl-3-methylimidazolium thiocyanate at the air-water interface using sum-frequency generation vibrational spectroscopy. Wang B; Duan Y; Bai Y; Zhang W; Peng J; Bian H J Chem Phys; 2024 Oct; 161(13):. PubMed ID: 39351949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]