These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30713655)

  • 1. Prediction of morphological changes of catalyst materials under reaction conditions by combined
    Cheula R; Soon A; Maestri M
    Catal Sci Technol; 2018 Jul; 8(14):3493-3503. PubMed ID: 30713655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SurfKin: an ab initio kinetic code for modeling surface reactions.
    Le TN; Liu B; Huynh LK
    J Comput Chem; 2014 Oct; 35(26):1890-9. PubMed ID: 25111729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microkinetic Modeling: A Tool for Rational Catalyst Design.
    Motagamwala AH; Dumesic JA
    Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.
    Shao K; Mesbah A
    JACS Au; 2024 Feb; 4(2):525-544. PubMed ID: 38425907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative multiscale and multi-physics computations for operando catalyst nanostructure elucidation and kinetic modeling.
    Rajan A; Pushkar AP; Dharmalingam BC; Varghese JJ
    iScience; 2023 Jul; 26(7):107029. PubMed ID: 37360694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis.
    Xu J; Cao XM; Hu P
    Phys Chem Chem Phys; 2021 May; 23(19):11155-11179. PubMed ID: 33972971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling.
    Xie W; Xu J; Chen J; Wang H; Hu P
    Acc Chem Res; 2022 May; 55(9):1237-1248. PubMed ID: 35442027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DFT-based microkinetic study on methanol synthesis from CO
    Zhou Z; Qin B; Li S; Sun Y
    Phys Chem Chem Phys; 2021 Jan; 23(3):1888-1895. PubMed ID: 33458735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst.
    Kim SK; Kim HW; Han SJ; Lee SW; Shin J; Kim YT
    Commun Chem; 2020 May; 3(1):58. PubMed ID: 36703477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Stability Studies Employing Dedicated Model Catalysts.
    Hess F; Smarsly BM; Over H
    Acc Chem Res; 2020 Feb; 53(2):380-389. PubMed ID: 31967784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constrained Chemical Dynamics of CO Dissociation/Hydrogenation on Rh Surfaces.
    Kraus P; Frank I
    Chemistry; 2018 May; 24(28):7188-7199. PubMed ID: 29464790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Going Beyond Silver in Ethylene Epoxidation with First-Principles Catalyst Screening.
    Huš M; Grilc M; Teržan J; Gyergyek S; Likozar B; Hellman A
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305804. PubMed ID: 37226934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Generation of Microkinetics for Heterogeneously Catalyzed Reactions Considering Correlated Uncertainties.
    Kreitz B; Lott P; Studt F; Medford AJ; Deutschmann O; Goldsmith CF
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202306514. PubMed ID: 37505449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.
    Wang YG; Cantu DC; Lee MS; Li J; Glezakou VA; Rousseau R
    J Am Chem Soc; 2016 Aug; 138(33):10467-76. PubMed ID: 27480512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis.
    An Q; McDonald M; Fortunelli A; Goddard WA
    ACS Nano; 2021 Jan; 15(1):1675-1684. PubMed ID: 33355457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas.
    Cusinato L; Martínez-Prieto LM; Chaudret B; Del Rosal I; Poteau R
    Nanoscale; 2016 Jun; 8(21):10974-92. PubMed ID: 27172520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Synthesis of Ethanol from CH
    Zuo ZJ; Peng F; Huang W
    Sci Rep; 2016 Oct; 6():34670. PubMed ID: 27694944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-adjusting platinum surface for acetone hydrogenation.
    Demir B; Kropp T; Rivera-Dones KR; Gilcher EB; Huber GW; Mavrikakis M; Dumesic JA
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3446-3450. PubMed ID: 32005709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.