These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30713744)
1. Coupling CFD-DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems. Uglietti R; Bracconi M; Maestri M React Chem Eng; 2018 Aug; 3(4):527-539. PubMed ID: 30713744 [TBL] [Abstract][Full Text] [Related]
2. Coupling Euler-Euler and Microkinetic Modeling for the Simulation of Fluidized Bed Reactors: an Application to the Oxidative Coupling of Methane. Micale D; Uglietti R; Bracconi M; Maestri M Ind Eng Chem Res; 2021 May; 60(18):6687-6697. PubMed ID: 34054213 [TBL] [Abstract][Full Text] [Related]
3. Computational Modeling of Fluidized Beds with a Focus on Pharmaceutical Applications: A Review. Sansare S; Aziz H; Sen K; Patel S; Chaudhuri B J Pharm Sci; 2022 Apr; 111(4):1110-1125. PubMed ID: 34555391 [TBL] [Abstract][Full Text] [Related]
4. On the Applicability of the Coarse Grained Coupled CFD-DEM Model to Predict the Heat Transfer During the Fluidized Bed Drying of Pharmaceutical Granules. Aziz H; Sansare S; Duran T; Gao Y; Chaudhuri B Pharm Res; 2022 Sep; 39(9):1991-2003. PubMed ID: 35986121 [TBL] [Abstract][Full Text] [Related]
5. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach. Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893 [TBL] [Abstract][Full Text] [Related]
6. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related]
7. CFD-DEM Fluidized Bed Drying Study Using a Coarse-Graining Technique. de Munck MJA; Peters EAJF; Kuipers JAM Ind Eng Chem Res; 2023 Dec; 62(48):20911-20920. PubMed ID: 38074519 [TBL] [Abstract][Full Text] [Related]
8. Possibilities and Limits of Computational Fluid Dynamics-Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends. Kieckhefen P; Pietsch S; Dosta M; Heinrich S Annu Rev Chem Biomol Eng; 2020 Jun; 11():397-422. PubMed ID: 32169000 [TBL] [Abstract][Full Text] [Related]
9. Multi-scale CFD simulation of hydrodynamics and cracking reactions in fixed fluidized bed reactors. Zhang JH; Wang ZB; Zhao H; Tian YY; Shan HH; Yang CH Appl Petrochem Res; 2015; 5(4):255-261. PubMed ID: 27656344 [TBL] [Abstract][Full Text] [Related]
10. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production. Banaei M; Jegers J; van Sint Annaland M; Kuipers JAM; Deen NG Ind Eng Chem Res; 2017 Aug; 56(30):8729-8737. PubMed ID: 29187774 [TBL] [Abstract][Full Text] [Related]
11. CFD-DEM -DDM Model for Spray Coating Process in a Wurster Coater. Farivar F; Zhang H; Tian ZF; Gupte A J Pharm Sci; 2020 Dec; 109(12):3678-3689. PubMed ID: 33007276 [TBL] [Abstract][Full Text] [Related]
12. An approach for modeling thermal destruction of hazardous wastes in circulating fluidized bed incinerator. Patil MP; Sonolikar RL J Environ Sci Eng; 2008 Oct; 50(4):289-98. PubMed ID: 19697764 [TBL] [Abstract][Full Text] [Related]
13. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed. Boyce CM; Holland DJ; Scott SA; Dennis JS Ind Eng Chem Res; 2013 Dec; 52(50):18085-18094. PubMed ID: 24478537 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous Fenton reaction for elimination of Acid Yellow 36 in both fluidized-bed and stirred-tank reactors: Computational fluid dynamics versus experiments. Farshchi ME; Aghdasinia H; Khataee A Water Res; 2019 Mar; 151():203-214. PubMed ID: 30594832 [TBL] [Abstract][Full Text] [Related]
15. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models. Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371 [TBL] [Abstract][Full Text] [Related]
16. Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method. Shahzad K; Aeken WV; Mottaghi M; Kamyab VK; Kuhn S Microfluid Nanofluidics; 2018; 22(9):104. PubMed ID: 30393471 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review. Mortier ST; De Beer T; Gernaey KV; Remon JP; Vervaet C; Nopens I Eur J Pharm Biopharm; 2011 Oct; 79(2):205-25. PubMed ID: 21664970 [TBL] [Abstract][Full Text] [Related]
18. Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method. Cheng C; Zhang X J Appl Mech; 2013 May; 80(3):0314031-314036. PubMed ID: 24891728 [TBL] [Abstract][Full Text] [Related]
19. CFD-DEM Coupling Model for Deposition Process Analysis of Ultrafine Particles in a Micro Impinging Flow Field. Wang Y; Yin Z; Bao F; Shen J Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888927 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation of film coating process in a novel rotating fluidized bed. Nakamura H; Iwasaki T; Watano S Chem Pharm Bull (Tokyo); 2006 Jun; 54(6):839-46. PubMed ID: 16755055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]