These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30714142)

  • 1. Fabrication of conductive fibrous scaffold for photoreceptor differentiation of mesenchymal stem cell.
    Nekouian S; Sojoodi M; Nadri S
    J Cell Physiol; 2019 Sep; 234(9):15800-15808. PubMed ID: 30714142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels.
    Zhang J; Li M; Kang ET; Neoh KG
    Acta Biomater; 2016 Mar; 32():46-56. PubMed ID: 26703122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M
    Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Esmaeili Abdar Z; Jafari R; Mohammadi P; Nadri S
    Int J Artif Organs; 2022 Aug; 45(8):695-703. PubMed ID: 35773946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of mesenchymal stem cells -derived trabecular meshwork into dopaminergic neuron-like cells on nanofibrous scaffolds.
    Jamali S; Mostafavi H; Barati G; Eskandari M; Nadri S
    Biologicals; 2017 Nov; 50():49-54. PubMed ID: 28942114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth.
    Entezari M; Mozafari M; Bakhtiyari M; Moradi F; Bagher Z; Soleimani M
    J Biomed Mater Res A; 2022 May; 110(5):1134-1146. PubMed ID: 35075781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled surface morphology and hydrophilicity of polycaprolactone toward selective differentiation of mesenchymal stem cells to neural like cells.
    Jahani H; Jalilian FA; Wu CY; Kaviani S; Soleimani M; Abbasi N; Ou KL; Hosseinkhani H
    J Biomed Mater Res A; 2015 May; 103(5):1875-81. PubMed ID: 25203786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of parameters on the quality of core-shell fibrous scaffold for retinal differentiation of conjunctiva mesenchymal stem cells.
    Nadri S; Nasehi F; Barati G
    J Biomed Mater Res A; 2017 Jan; 105(1):189-197. PubMed ID: 27615413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-7 promotes neural differentiation of trabecular meshwork mesenchymal stem cell on nanofibrous scaffold.
    Jedari B; Rahmani A; Naderi M; Nadri S
    J Cell Biochem; 2020 Apr; 121(4):2818-2827. PubMed ID: 31692062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells.
    Tambrchi P; Mahdavi AH; DaliriJoupari M; Soltani L
    Cell Biochem Funct; 2022 Oct; 40(7):668-682. PubMed ID: 35924670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Chitosan/Polypyrrole-coated poly(L-lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth.
    Xu Y; Huang Z; Pu X; Yin G; Zhang J
    Cell Prolif; 2019 May; 52(3):e12588. PubMed ID: 30972893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold.
    Rahmani A; Naderi M; Barati G; Arefian E; Jedari B; Nadri S
    Biochem Biophys Res Commun; 2020 Aug; 529(3):526-532. PubMed ID: 32736669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation.
    Rahimzadegan M; Mohammadi Q; Shafieian M; Sabzevari O; Hassannejad Z
    Biomater Adv; 2022 Mar; 134():112634. PubMed ID: 35577691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of miR-9 overexpression and electrical induction on differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells.
    Naderi M; Nadri S
    Int J Artif Organs; 2022 Jul; 45(7):623-630. PubMed ID: 35658561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering.
    Zhao Y; Liang Y; Ding S; Zhang K; Mao HQ; Yang Y
    Biomaterials; 2020 Oct; 255():120164. PubMed ID: 32554132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells.
    Spearman BS; Hodge AJ; Porter JL; Hardy JG; Davis ZD; Xu T; Zhang X; Schmidt CE; Hamilton MC; Lipke EA
    Acta Biomater; 2015 Dec; 28():109-120. PubMed ID: 26407651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electro-spun tri-component polymer biomaterial with optoelectronic properties for neuronal differentiation.
    Yuan B; Aziz MRF; Li S; Wu J; Li D; Li RK
    Acta Biomater; 2022 Feb; 139():82-90. PubMed ID: 34082104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation.
    Li Y; Li X; Zhao R; Wang C; Qiu F; Sun B; Ji H; Qiu J; Wang C
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():106-112. PubMed ID: 28024565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method.
    Gautam S; Dinda AK; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.