BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 30714149)

  • 21. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species.
    Guilbeault-Mayers X; Turner BL; Laliberté E
    Ecology; 2020 Aug; 101(8):e03090. PubMed ID: 32329055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems.
    Huang W; Zhou G; Liu J; Zhang D; Xu Z; Liu S
    Environ Pollut; 2012 Sep; 168():113-20. PubMed ID: 22609862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest.
    Alvarez-Clare S; Mack MC; Brooks M
    Ecology; 2013 Jul; 94(7):1540-51. PubMed ID: 23951714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest.
    Andersen KM; Mayor JR; Turner BL
    Ecology; 2017 May; 98(5):1388-1398. PubMed ID: 28263365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests.
    Liu J; Huang W; Zhou G; Zhang D; Liu S; Li Y
    Glob Chang Biol; 2013 Jan; 19(1):208-16. PubMed ID: 23504732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant community responses to stand-level nutrient fertilization in a secondary tropical dry forest.
    Waring BG; Pérez-Aviles D; Murray JG; Powers JS
    Ecology; 2019 Jun; 100(6):e02691. PubMed ID: 30989648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nitrogen budget of a pine forest under free air CO
    Finzi AC; DeLucia EH; Hamilton JG; Richter DD; Schlesinger WH
    Oecologia; 2002 Aug; 132(4):567-578. PubMed ID: 28547643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.
    Sheffer E; Batterman SA; Levin SA; Hedin LO
    Nat Plants; 2015 Nov; 1():15182. PubMed ID: 27251717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.
    Shi M; Fisher JB; Brzostek ER; Phillips RP
    Glob Chang Biol; 2016 Mar; 22(3):1299-314. PubMed ID: 26473512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variance in bacterial communities, potential bacterial carbon sequestration and nitrogen fixation between light and dark conditions under elevated CO
    Li Y; Wu Z; Dong X; Jia Z; Sun Q
    Sci Total Environ; 2019 Feb; 652():234-242. PubMed ID: 30366324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland.
    Hasegawa S; Macdonald CA; Power SA
    Glob Chang Biol; 2016 Apr; 22(4):1628-43. PubMed ID: 26546164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum.
    Stanton DE; Batterman SA; Von Fischer JC; Hedin LO
    Ecology; 2019 Sep; 100(9):e02795. PubMed ID: 31301692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorus scarcity contributes to nitrogen limitation in lowland tropical rainforests.
    Vallicrosa H; Lugli LF; Fuchslueger L; Sardans J; Ramirez-Rojas I; Verbruggen E; Grau O; Bréchet L; Peguero G; Van Langenhove L; Verryckt LT; Terrer C; Llusià J; Ogaya R; Márquez L; Roc-Fernández P; Janssens I; Peñuelas J
    Ecology; 2023 Jun; 104(6):e4049. PubMed ID: 37039427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests.
    Liu X; Burslem DFRP; Taylor JD; Taylor AFS; Khoo E; Majalap-Lee N; Helgason T; Johnson D
    Ecol Lett; 2018 May; 21(5):713-723. PubMed ID: 29536604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogen-saturated forest.
    Zheng M; Zhang W; Luo Y; Li D; Wang S; Huang J; Lu X; Mo J
    Ecology; 2018 Sep; 99(9):2037-2046. PubMed ID: 29893021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isotopic evidence for increased carbon and nitrogen exchanges between peatland plants and their symbiotic microbes with rising atmospheric CO
    Yang Q; Liu Z; Houlton BZ; Gao D; Chang Q; Li H; Fan X; Liu B; Bai E
    Glob Chang Biol; 2023 Apr; 29(7):1939-1950. PubMed ID: 36585918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems.
    Liang Y; Pan F; Jiang Z; Li Q; Pu J; Liu K
    BMC Plant Biol; 2022 Apr; 22(1):188. PubMed ID: 35410135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest.
    Brookshire ENJ; Wurzburger N; Currey B; Menge DNL; Oatham MP; Roberts C
    Sci Rep; 2019 May; 9(1):7571. PubMed ID: 31110241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests.
    Menge DN; DeNoyer JL; Lichstein JW
    PLoS One; 2010 Aug; 5(8):e12056. PubMed ID: 20700466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species.
    Liese R; Lübbe T; Albers NW; Meier IC
    Tree Physiol; 2018 Jan; 38(1):83-95. PubMed ID: 29126247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.