These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 30714286)

  • 1. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants.
    Rudall PJ; Hilton J; Bateman RM
    New Phytol; 2013 Nov; 200(3):598-614. PubMed ID: 23909825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning.
    Rudall PJ; Knowles EV
    Ann Bot; 2013 Oct; 112(6):1031-43. PubMed ID: 23969762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal development and orientation: a phylogenetic and ecophysiological perspective.
    Rudall PJ
    Ann Bot; 2023 Aug; 131(7):1039-1050. PubMed ID: 37288594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants.
    Coiro M; Martínez LCA; Upchurch GR; Doyle JA
    New Phytol; 2020 Oct; 228(1):344-360. PubMed ID: 32400897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and development of monocot stomata.
    Rudall PJ; Chen ED; Cullen E
    Am J Bot; 2017 Aug; 104(8):1122-1141. PubMed ID: 28794059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The remarkable stomata of horsetails (Equisetum): patterning, ultrastructure and development.
    Cullen E; Rudall PJ
    Ann Bot; 2016 Aug; 118(2):207-18. PubMed ID: 27268485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidermal patterning and stomatal development in Gnetales.
    Rudall PJ; Rice CL
    Ann Bot; 2019 Aug; 124(1):149-164. PubMed ID: 31045221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution.
    McElwain JC; Yiotis C; Lawson T
    New Phytol; 2016 Jan; 209(1):94-103. PubMed ID: 26230251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal allocation of leaf epidermal area for gas exchange.
    de Boer HJ; Price CA; Wagner-Cremer F; Dekker SC; Franks PJ; Veneklaas EJ
    New Phytol; 2016 Jun; 210(4):1219-28. PubMed ID: 26991124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.
    Feild TS; Brodribb TJ; Iglesias A; Chatelet DS; Baresch A; Upchurch GR; Gomez B; Mohr BA; Coiffard C; Kvacek J; Jaramillo C
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8363-6. PubMed ID: 21536892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.
    McKown AD; Guy RD; Quamme L; Klápště J; La Mantia J; Constabel CP; El-Kassaby YA; Hamelin RC; Zifkin M; Azam MS
    Mol Ecol; 2014 Dec; 23(23):5771-90. PubMed ID: 25319679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal observations in dicotyledons.
    Zarinkamar F
    Pak J Biol Sci; 2007 Jan; 10(2):199-219. PubMed ID: 19070017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns.
    Shtein I; Popper ZA; Harpaz-Saad S
    Plant Signal Behav; 2017 Jul; 12(7):e1339858. PubMed ID: 28718691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.
    Jud NA; Hickey LJ
    Am J Bot; 2013 Dec; 100(12):2437-49. PubMed ID: 24287268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hunting the Snark: the flawed search for mythical Jurassic angiosperms.
    Bateman RM
    J Exp Bot; 2020 Jan; 71(1):22-35. PubMed ID: 31538196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cratonia cotyledon gen. et sp. nov: a unique Cretaceous seedling related to Welwitschia.
    Rydin C; Mohr B; Friis EM
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S29-32. PubMed ID: 12952628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula.
    Coiro M; McLoughlin S; Steinthorsdottir M; Vajda V; Fabrikant D; Seyfullah LJ
    New Phytol; 2024 Jun; 242(6):2845-2856. PubMed ID: 38623034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.