BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 30714302)

  • 1. In-Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices.
    Neupane GP; Zhou K; Chen S; Yildirim T; Zhang P; Lu Y
    Small; 2019 Mar; 15(11):e1804733. PubMed ID: 30714302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Energy Transfer of Both Bright and Dark Excitons in 2D van der Waals Heterostructures Beyond Dipolar Coupling.
    Wu L; Chen Y; Zhou H; Zhu H
    ACS Nano; 2019 Feb; 13(2):2341-2348. PubMed ID: 30715845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect Excitons and Trions in MoSe
    Calman EV; Fowler-Gerace LH; Choksy DJ; Butov LV; Nikonov DE; Young IA; Hu S; Mishchenko A; Geim AK
    Nano Lett; 2020 Mar; 20(3):1869-1875. PubMed ID: 32069058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocurrent generation with two-dimensional van der Waals semiconductors.
    Buscema M; Island JO; Groenendijk DJ; Blanter SI; Steele GA; van der Zant HS; Castellanos-Gomez A
    Chem Soc Rev; 2015 Jun; 44(11):3691-718. PubMed ID: 25909688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Many-Body Complexes in 2D Semiconductors.
    Pei J; Yang J; Yildirim T; Zhang H; Lu Y
    Adv Mater; 2019 Jan; 31(2):e1706945. PubMed ID: 30129218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive Interfacial Charge Behavior and Versatile Photoresponse Performance in Isotropic/Anisotropic WS
    Tang Y; Hao H; Kang Y; Liu Q; Sui Y; Wei K; Cheng X; Jiang T
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53475-53483. PubMed ID: 33180451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer Coupling in Anisotropic/Isotropic Van der Waals Heterostructures of ReS
    You B; Xu Z; Yang J; Jiang X; Li Y; Shao G; Jin Y; Xiang H; Jiang H; Liu X; Sun J; Feng Y; Jiang Y; Pan A; Liu S
    Small; 2024 Jan; 20(3):e2304010. PubMed ID: 37726234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-Dimensional In-Plane Heterostructures from 1D Mo
    Kim H; Johns JE; Yoo Y
    Small; 2020 Nov; 16(47):e2002849. PubMed ID: 33103352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D-1D mixed-dimensional heterostructures: progress, device applications and perspectives.
    Huang PY; Qin JK; Zhu CY; Zhen L; Xu CY
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34479213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material.
    Klein J; Pingault B; Florian M; Heißenbüttel MC; Steinhoff A; Song Z; Torres K; Dirnberger F; Curtis JB; Weile M; Penn A; Deilmann T; Dana R; Bushati R; Quan J; Luxa J; Sofer Z; Alù A; Menon VM; Wurstbauer U; Rohlfing M; Narang P; Lončar M; Ross FM
    ACS Nano; 2023 Mar; 17(6):5316-5328. PubMed ID: 36926838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors.
    Xu R; Zhang S; Wang F; Yang J; Wang Z; Pei J; Myint YW; Xing B; Yu Z; Fu L; Qin Q; Lu Y
    ACS Nano; 2016 Feb; 10(2):2046-53. PubMed ID: 26713882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Genome of van der Waals Heterostructures.
    Andersen K; Latini S; Thygesen KS
    Nano Lett; 2015 Jul; 15(7):4616-21. PubMed ID: 26047386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance MoS
    Um DS; Lee Y; Lim S; Park S; Lee H; Ko H
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33955-33962. PubMed ID: 27960400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics.
    Liu Y; Elbanna A; Gao W; Pan J; Shen Z; Teng J
    Adv Mater; 2022 Jun; 34(25):e2107138. PubMed ID: 34700359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities.
    Liang SJ; Cheng B; Cui X; Miao F
    Adv Mater; 2020 Jul; 32(27):e1903800. PubMed ID: 31608514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Dimensional van der Waals Heterostructures: A Perspective.
    Guo J; Xiang R; Cheng T; Maruyama S; Li Y
    ACS Nanosci Au; 2022 Feb; 2(1):3-11. PubMed ID: 37101518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering anisotropy in 2D transition metal dichalcogenides via heterostructures.
    Wu B; Xie X; Zheng H; Li S; Ding J; He J; Liu Z; Liu Y
    Opt Lett; 2023 Nov; 48(22):5867-5870. PubMed ID: 37966739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Forces to Assemblies: van der Waals Forces-Driven Assemblies in Anisotropic Quasi-2D Graphene and Quasi-1D Nanocellulose Heterointerfaces towards Quasi-3D Nanoarchitecture.
    Brakat A; Zhu H
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.