These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30714320)
41. Magnetic MSP@ZrO₂ microspheres with yolk-shell structure: designed synthesis and application in highly selective enrichment of phosphopeptides. Ma WF; Zhang C; Zhang YT; Yu M; Guo J; Zhang Y; Lu HJ; Wang CC Langmuir; 2014 Jun; 30(22):6602-11. PubMed ID: 24835108 [TBL] [Abstract][Full Text] [Related]
42. Controlled synthesis of monodisperse SiO(2)--TiO(2) microspheres with a yolk-shell structure as effective photocatalysts. Yoo JB; Yoo HJ; Lim BW; Lee KH; Kim MH; Kang D; Hur NH ChemSusChem; 2012 Dec; 5(12):2334-40. PubMed ID: 23132768 [TBL] [Abstract][Full Text] [Related]
43. Facile Preparation of Ultrathin Co Chen Y; Hu J; Diao H; Luo W; Song YF Chemistry; 2017 Mar; 23(16):4010-4016. PubMed ID: 28150913 [TBL] [Abstract][Full Text] [Related]
44. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature. Prabu S; Chiang KY J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756 [TBL] [Abstract][Full Text] [Related]
45. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane. Peng CY; Kang L; Cao S; Chen Y; Lin ZS; Fu WF Angew Chem Int Ed Engl; 2015 Dec; 54(52):15725-9. PubMed ID: 26545954 [TBL] [Abstract][Full Text] [Related]
46. Yolk-Shell Fe Tian K; Wang J; Guo W; Li R; Cao L; Xu Z; Wang H Macromol Rapid Commun; 2020 Sep; 41(17):e2000307. PubMed ID: 32767468 [TBL] [Abstract][Full Text] [Related]
47. Generalized Synthesis of Ternary Sulfide Hollow Structures with Enhanced Photocatalytic Performance for Degradation and Hydrogen Evolution. Ding S; Liu X; Shi Y; Liu Y; Zhou T; Guo Z; Hu J ACS Appl Mater Interfaces; 2018 May; 10(21):17911-17922. PubMed ID: 29741367 [TBL] [Abstract][Full Text] [Related]
48. The Interplay between Structure and Product Selectivity of CO Yang C; Liu S; Wang Y; Song J; Wang G; Wang S; Zhao ZJ; Mu R; Gong J Angew Chem Int Ed Engl; 2019 Aug; 58(33):11242-11247. PubMed ID: 31132201 [TBL] [Abstract][Full Text] [Related]
49. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO Jiao J; Lin R; Liu S; Cheong WC; Zhang C; Chen Z; Pan Y; Tang J; Wu K; Hung SF; Chen HM; Zheng L; Lu Q; Yang X; Xu B; Xiao H; Li J; Wang D; Peng Q; Chen C; Li Y Nat Chem; 2019 Mar; 11(3):222-228. PubMed ID: 30664719 [TBL] [Abstract][Full Text] [Related]
50. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials. Zhou J; Wang M; Qian T; Liu S; Cao X; Yang T; Yang R; Yan C Nanotechnology; 2017 Sep; 28(36):365403. PubMed ID: 28590255 [TBL] [Abstract][Full Text] [Related]
51. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933 [TBL] [Abstract][Full Text] [Related]
52. A new general approach to synthesizing filled and yolk-shell structured metal oxide microspheres by applying a carbonaceous template. Hong YJ; Roh KC; Lee JK; Kang YC Nanoscale; 2017 Nov; 9(45):17991-17999. PubMed ID: 29131226 [TBL] [Abstract][Full Text] [Related]
53. In Situ Confined Growth Based on a Self-Templating Reduction Strategy of Highly Dispersed Ni Nanoparticles in Hierarchical Yolk-Shell Fe@SiO Jiao J; Wang H; Guo W; Li R; Tian K; Xu Z; Jia Y; Wu Y; Cao L Chem Asian J; 2016 Dec; 11(24):3534-3540. PubMed ID: 27787941 [TBL] [Abstract][Full Text] [Related]
54. One-Pot Method Synthesis of Bimetallic MgCu-MOF-74 and Its CO Ling J; Zhou A; Wang W; Jia X; Ma M; Li Y ACS Omega; 2022 Jun; 7(23):19920-19929. PubMed ID: 35722001 [TBL] [Abstract][Full Text] [Related]
55. Synergistic Ternary Composite (Carbon/Fe3 O4 @Graphene) with Hollow Microspherical and Robust Structure for Li-Ion Storage. Li X; Zheng X; Shao J; Gao T; Shi Q; Qu Q Chemistry; 2016 Jan; 22(1):376-81. PubMed ID: 26616668 [TBL] [Abstract][Full Text] [Related]
56. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities. Choi SH; Kang YC ACS Appl Mater Interfaces; 2015 Nov; 7(44):24694-702. PubMed ID: 26484615 [TBL] [Abstract][Full Text] [Related]
57. In Situ Antisolvent Approach to Hydrangea-like HCo Zhang H; Tong Y; Xu J; Lu Q; Gao F Chemistry; 2018 Jan; 24(2):400-408. PubMed ID: 28950042 [TBL] [Abstract][Full Text] [Related]
58. Co3 O4 Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Wang GH; Deng X; Gu D; Chen K; Tüysüz H; Spliethoff B; Bongard HJ; Weidenthaler C; Schmidt W; Schüth F Angew Chem Int Ed Engl; 2016 Sep; 55(37):11101-5. PubMed ID: 27468092 [TBL] [Abstract][Full Text] [Related]
59. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Gao M; Yu Y; Yang W; Li J; Xu S; Feng M; Li H Nanoscale; 2019 Feb; 11(8):3506-3513. PubMed ID: 30741302 [TBL] [Abstract][Full Text] [Related]
60. Yolk-Shell-Structured Aluminum Phenylphosphonate Microspheres with Anionic Core and Cationic Shell. Zhang L; Qian K; Wang X; Zhang F; Shi X; Jiang Y; Liu S; Jaroniec M; Liu J Adv Sci (Weinh); 2016 May; 3(5):1500363. PubMed ID: 27812467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]