BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30714432)

  • 1. Systemic oscillator-driven and nutrient-responsive hormonal regulation of daily expression rhythms for gluconeogenic enzyme genes in the mouse liver.
    Taira A; Arita E; Matsumoto E; Oohira A; Iwase K; Hiwasa T; Yokote K; Shibata S; Takiguchi M
    Chronobiol Int; 2019 May; 36(5):591-615. PubMed ID: 30714432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifactorial regulation of daily rhythms in expression of the metabolically responsive gene spot14 in the mouse liver.
    Ishihara A; Matsumoto E; Horikawa K; Kudo T; Sakao E; Nemoto A; Iwase K; Sugiyama H; Tamura Y; Shibata S; Takiguchi M
    J Biol Rhythms; 2007 Aug; 22(4):324-34. PubMed ID: 17660449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daytime restricted feeding modifies the daily variations of liver gluconeogenesis: adaptations in biochemical and endocrine regulators.
    Pérez-Mendoza M; Rivera-Zavala JB; Díaz-Muñoz M
    Chronobiol Int; 2014 Aug; 31(7):815-28. PubMed ID: 24766192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule.
    Girotti M; Weinberg MS; Spencer RL
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E888-97. PubMed ID: 19190255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver.
    Matsumoto E; Ishihara A; Tamai S; Nemoto A; Iwase K; Hiwasa T; Shibata S; Takiguchi M
    J Biol Chem; 2010 Oct; 285(43):33028-33036. PubMed ID: 20720008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zbtb7c is a critical gluconeogenic transcription factor that induces glucose-6-phosphatase and phosphoenylpyruvate carboxykinase 1 genes expression during mice fasting.
    Choi WI; Yoon JH; Song JY; Jeon BN; Park JM; Koh DI; Ahn YH; Kim KS; Lee IK; Hur MW
    Biochim Biophys Acta Gene Regul Mech; 2019 Jun; 1862(6):643-656. PubMed ID: 30959128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding.
    Yamamuro D; Takahashi M; Nagashima S; Wakabayashi T; Yamazaki H; Takei A; Takei S; Sakai K; Ebihara K; Iwasaki Y; Yada T; Ishibashi S
    PLoS One; 2020; 15(6):e0234439. PubMed ID: 32530967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats.
    Eggink HM; Oosterman JE; de Goede P; de Vries EM; Foppen E; Koehorst M; Groen AK; Boelen A; Romijn JA; la Fleur SE; Soeters MR; Kalsbeek A
    Chronobiol Int; 2017; 34(10):1339-1353. PubMed ID: 29028359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormalities of glucose homeostasis and the hypothalamic-pituitary-adrenal axis in mice lacking hexose-6-phosphate dehydrogenase.
    Rogoff D; Ryder JW; Black K; Yan Z; Burgess SC; McMillan DR; White PC
    Endocrinology; 2007 Oct; 148(10):5072-80. PubMed ID: 17656460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon.
    Mutel E; Gautier-Stein A; Abdul-Wahed A; Amigó-Correig M; Zitoun C; Stefanutti A; Houberdon I; Tourette JA; Mithieux G; Rajas F
    Diabetes; 2011 Dec; 60(12):3121-31. PubMed ID: 22013018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding.
    Polidarová L; Sládek M; Soták M; Pácha J; Sumová A
    Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability.
    Hernández-Pérez J; Míguez JM; Librán-Pérez M; Otero-Rodiño C; Naderi F; Soengas JL; López-Patiño MA
    Chronobiol Int; 2015; 32(10):1391-408. PubMed ID: 26587750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted daily light-dark cycle induces the expression of hepatic gluconeogenic regulatory genes and hyperglycemia with glucose intolerance in mice.
    Oishi K; Itoh N
    Biochem Biophys Res Commun; 2013 Mar; 432(1):111-5. PubMed ID: 23376072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting.
    Liang Q; Zhong L; Zhang J; Wang Y; Bornstein SR; Triggle CR; Ding H; Lam KS; Xu A
    Diabetes; 2014 Dec; 63(12):4064-75. PubMed ID: 25024372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout.
    Kirchner S; Panserat S; Lim PL; Kaushik S; Ferraris RP
    J Comp Physiol B; 2008 Mar; 178(3):429-38. PubMed ID: 18180932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction.
    Banerjee S; Ghoshal S; Stevens JR; McCommis KS; Gao S; Castro-Sepulveda M; Mizgier ML; Girardet C; Kumar KG; Galgani JE; Niehoff ML; Farr SA; Zhang J; Butler AA
    J Biol Chem; 2020 Oct; 295(40):13753-13768. PubMed ID: 32727846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.
    Kim H; Zheng Z; Walker PD; Kapatos G; Zhang K
    Mol Cell Biol; 2017 Jul; 37(14):. PubMed ID: 28461393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Restricted Feeding Prevents Ablation of Diurnal Rhythms in Gastric Vagal Afferent Mechanosensitivity Observed in High-Fat Diet-Induced Obese Mice.
    Kentish SJ; Hatzinikolas G; Li H; Frisby CL; Wittert GA; Page AJ
    J Neurosci; 2018 May; 38(22):5088-5095. PubMed ID: 29760179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.