These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30714589)

  • 1. Computational design of CO-tolerant Pt
    Liu Y; Duan Z; Henkelman G
    Phys Chem Chem Phys; 2019 Feb; 21(7):4046-4052. PubMed ID: 30714589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Methanol Oxidation Reaction by Enhanced CO Tolerance on Bimetallic Pt/Ir Electrocatalysts Using Electronic and Bifunctional Effects.
    Kwon S; Ham DJ; Kim T; Kwon Y; Lee SG; Cho M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39581-39589. PubMed ID: 30370757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing CO Tolerance in PEMFC Anodes via Thermal Oxidation Induced RuO
    Chen L; Zhang P; Jin YQ; Yang H; Sheng T; Yan Y; Wang T; Chen Z; Tian N; Li X; Zhou ZY; Sun SG
    Nano Lett; 2024 Aug; 24(34):10642-10649. PubMed ID: 39158134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intriguing H
    Ke S; Cui B; Sun C; Qin Y; Zhang J; Dou M
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47765-47774. PubMed ID: 36251743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells.
    Wang D; Subban CV; Wang H; Rus E; DiSalvo FJ; Abruña HD
    J Am Chem Soc; 2010 Aug; 132(30):10218-20. PubMed ID: 20662494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-metal Pt monolayer electrocatalysts with improved CO tolerance.
    Nilekar AU; Sasaki K; Farberow CA; Adzic RR; Mavrikakis M
    J Am Chem Soc; 2011 Nov; 133(46):18574-6. PubMed ID: 22026558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High CO and sulfur tolerant proton exchange membrane fuel cell anodes enabled by "work along both lines" mechanism of 2,6-dihydroxymethyl pyridine molecule blocking layer.
    Zhang D; Liu W; Ye K; Li X
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):413-422. PubMed ID: 37722170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.
    Hassan A; Ticianelli EA
    An Acad Bras Cienc; 2018; 90(1 Suppl 1):697-718. PubMed ID: 29668800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of nonelectrochemical shift reaction on a CO-tolerant high-entropy state Pt-Ru anode catalyst for reliable and efficient residential fuel cell systems.
    Takeguchi T; Yamanaka T; Asakura K; Muhamad EN; Uosaki K; Ueda W
    J Am Chem Soc; 2012 Sep; 134(35):14508-12. PubMed ID: 22876851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS.
    Wakisaka M; Mitsui S; Hirose Y; Kawashima K; Uchida H; Watanabe M
    J Phys Chem B; 2006 Nov; 110(46):23489-96. PubMed ID: 17107203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer.
    Wang T; Li LY; Chen LN; Sheng T; Chen L; Wang YC; Zhang P; Hong YH; Ye J; Lin WF; Zhang Q; Zhang P; Fu G; Tian N; Sun SG; Zhou ZY
    J Am Chem Soc; 2022 Jun; 144(21):9292-9301. PubMed ID: 35593455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of CO poisoning on functionalized Pt-TiN surfaces.
    Zhang RQ; Kim CE; Yu BD; Stampfl C; Soon A
    Phys Chem Chem Phys; 2013 Nov; 15(44):19450-6. PubMed ID: 24126922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt
    Biz C; Fianchini M; Polo V; Gracia J
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50484-50494. PubMed ID: 33124822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms.
    Wei K; Wang X; Ge J
    Chem Soc Rev; 2024 Aug; 53(17):8903-8948. PubMed ID: 39129479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell.
    Roth C; Benker N; Buhrmester T; Mazurek M; Loster M; Fuess H; Koningsberger DC; Ramaker DE
    J Am Chem Soc; 2005 Oct; 127(42):14607-15. PubMed ID: 16231913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional electrocatalysis in pt-ru nanoparticle systems.
    Roth C; Benker N; Theissmann R; Nichols RJ; Schiffrin DJ
    Langmuir; 2008 Mar; 24(5):2191-9. PubMed ID: 18211103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study.
    Sabbe MK; Laín L; Reyniers MF; Marin GB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12197-214. PubMed ID: 23811813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the Adsorption of Carbon Monoxide on Platinum Clusters by Dopant-Induced Electronic Structure Modification.
    Ferrari P; Molina LM; Kaydashev VE; Alonso JA; Lievens P; Janssens E
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):11059-63. PubMed ID: 27464653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New CO tolerant electro-catalysts exceeding Pt-Ru for the anode of fuel cells.
    Yano H; Ono C; Shiroishi H; Okada T
    Chem Commun (Camb); 2005 Mar; (9):1212-4. PubMed ID: 15726195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.