These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30714589)

  • 21. Electro-oxidation of carbon monoxide on well-ordered Pt(111)/Sn surface alloys.
    Hayden BE; Rendall ME; South O
    J Am Chem Soc; 2003 Jun; 125(25):7738-42. PubMed ID: 12812515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High CO tolerance of Pt/Ru nanocatalyst: insight from first principles calculations.
    Stolbov S; Ortigoza MA; Adzic R; Rahman TS
    J Chem Phys; 2009 Mar; 130(12):124714. PubMed ID: 19334879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD).
    Jayaraju N; Banga D; Thambidurai C; Liang X; Kim YG; Stickney JL
    Langmuir; 2014 Mar; 30(11):3254-63. PubMed ID: 24568151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding of Correlation between Electronic Properties and Sulfur Tolerance of Pt-Based Catalysts for Hydrogen Oxidation.
    Ke S; Qiu L; Zhao W; Sun C; Cui B; Xu G; Dou M
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7768-7778. PubMed ID: 35104117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PtMo alloy and MoO(x)@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts.
    Liu Z; Hu JE; Wang Q; Gaskell K; Frenkel AI; Jackson GS; Eichhorn B
    J Am Chem Soc; 2009 May; 131(20):6924-5. PubMed ID: 19453191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature dependence of CO-tolerant hydrogen oxidation reaction activity at Pt, Pt-Co, and Pt-Ru electrodes.
    Uchida H; Izumi K; Watanabe M
    J Phys Chem B; 2006 Nov; 110(43):21924-30. PubMed ID: 17064160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.
    Miller HA; Lavacchi A; Vizza F; Marelli M; Di Benedetto F; D'Acapito F; Paska Y; Page M; Dekel DR
    Angew Chem Int Ed Engl; 2016 May; 55(20):6004-7. PubMed ID: 27062251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton exchange membrane fuel cells powered with both CO and H
    Wang X; Li Y; Wang Y; Zhang H; Jin Z; Yang X; Shi Z; Liang L; Wu Z; Jiang Z; Zhang W; Liu C; Xing W; Ge J
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional theory study of water activation and COads + OHads reaction on pure platinum and bimetallic platinum/ruthenium nanoclusters.
    Perez A; Vilkas MJ; Cabrera CR; Ishikawa Y
    J Phys Chem B; 2005 Dec; 109(49):23571-8. PubMed ID: 16375333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.
    Jennings PC; Pollet BG; Johnston RL
    Phys Chem Chem Phys; 2012 Mar; 14(9):3134-9. PubMed ID: 22282058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Comparability of Pt to Pt-Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C.
    Li Q; Peng H; Wang Y; Xiao L; Lu J; Zhuang L
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1442-1446. PubMed ID: 30548378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of density functional theory to CO tolerance in fuel cells: a brief review.
    Stolbov S; Alcantara Ortigoza M; Rahman TS
    J Phys Condens Matter; 2009 Nov; 21(47):474226. PubMed ID: 21832505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells.
    Raghuveer V; Manthiram A; Bard AJ
    J Phys Chem B; 2005 Dec; 109(48):22909-12. PubMed ID: 16853984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single atom sites as CO scavenger to allow for crude hydrogen usage in PEMFC.
    Wang X; Yang X; Wang Y; Mei B; Jin Z; Li Y; Shi Z; Jiang Z; Liu C; Xing W; Ge J
    Sci Bull (Beijing); 2024 Apr; 69(8):1061-1070. PubMed ID: 38302331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. WO
    Tian H; Yu X; Huang W; Chang Z; Pei F; Zhou J; Dai N; Meng G; Chen C; Cui X; Shi J
    Small; 2023 Oct; 19(42):e2303061. PubMed ID: 37340882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification.
    Jia Z; Qin X; Chen Y; Cai X; Gao Z; Peng M; Huang F; Xiao D; Wen X; Wang N; Jiang Z; Zhou W; Liu H; Ma D
    Nat Commun; 2022 Nov; 13(1):6798. PubMed ID: 36357421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment.
    Long D; Liu Y; Ping X; Chen F; Tao X; Xie Z; Wang M; Wang M; Li L; Guo L; Chen S; Wei Z
    Nat Commun; 2024 Sep; 15(1):8105. PubMed ID: 39285182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.