These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30714590)

  • 1. How intermolecular interactions influence electronic absorption spectra: insights from the molecular packing of uracil in condensed phases.
    Fu F; Liao K; Ma J; Cheng Z; Zheng D; Gao L; Liu C; Li S; Li W
    Phys Chem Chem Phys; 2019 Feb; 21(7):4072-4081. PubMed ID: 30714590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-induced shifts in electronic spectra of uracil.
    DeFusco A; Ivanic J; Schmidt MW; Gordon MS
    J Phys Chem A; 2011 May; 115(18):4574-82. PubMed ID: 21491886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach.
    Li W; Dong H; Ma J; Li S
    Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral shifts of the n → π* and π → π* transitions of uracil based on a modified form of solvent reorganization energy.
    Ren HS; Li YK; Zhu Q; Zhu J; Li XY
    Phys Chem Chem Phys; 2012 Oct; 14(38):13284-91. PubMed ID: 22918130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: a TD-DFT quantum mechanical study.
    Improta R; Barone V
    J Am Chem Soc; 2004 Nov; 126(44):14320-1. PubMed ID: 15521728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach.
    Fornaro T; Carnimeo I; Biczysko M
    J Phys Chem A; 2015 May; 119(21):5313-26. PubMed ID: 25474755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of solid-state vibrational circular dichroism spectroscopy of (S)-alternarlactam by using fragmentation quantum chemical calculations.
    Jiang N; Tan RX; Ma J
    J Phys Chem B; 2011 Mar; 115(12):2801-13. PubMed ID: 21391541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo-quantum mechanics study of the lowest n-pi* and pi-pi* states of uracil in water.
    Ludwig V; Coutinho K; Canuto S
    Phys Chem Chem Phys; 2007 Sep; 9(35):4907-12. PubMed ID: 17912421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio investigation of the methylation and hydration effects on the electronic spectra of uracil and thymine.
    Etinski M; Marian CM
    Phys Chem Chem Phys; 2010 May; 12(19):4915-23. PubMed ID: 20445899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvatochromic Shifts in Uracil: A Combined MD-QM/MM Study.
    Olsen JM; Aidas K; Mikkelsen KV; Kongsted J
    J Chem Theory Comput; 2010 Jan; 6(1):249-56. PubMed ID: 26614335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method.
    Li Y; Wang D; Fu F; Xia Q; Li W; Li S
    J Comput Chem; 2022 Apr; 43(10):704-716. PubMed ID: 35213748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.
    Fang T; Jia J; Li S
    J Phys Chem A; 2016 May; 120(17):2700-11. PubMed ID: 27076120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations.
    Morisawa Y; Yasunaga M; Fukuda R; Ehara M; Ozaki Y
    J Chem Phys; 2013 Oct; 139(15):154301. PubMed ID: 24160507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases: Laser Spectroscopy of Isolated Uracil·Pt(CN)4(2-) and Uracil·Pt(CN)6(2-) Complexes.
    Sen A; Dessent CE
    J Phys Chem Lett; 2014 Oct; 5(19):3281-5. PubMed ID: 26278431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Energy-Based Fragmentation Approach for Localized Excited States of Large Systems.
    Li W; Li Y; Lin R; Li S
    J Phys Chem A; 2016 Dec; 120(48):9667-9677. PubMed ID: 27933912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of electronic spectra and photophysics of uracil derivatives.
    Baraldi I; Bruni MC; Costi MP; Pecorari P
    Photochem Photobiol; 1990 Aug; 52(2):361-74. PubMed ID: 2217549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives.
    Ye K; Wang J; Sun H; Liu Y; Mu Z; Li F; Jiang S; Zhang J; Zhang H; Wang Y; Che CM
    J Phys Chem B; 2005 Apr; 109(16):8008-16. PubMed ID: 16851936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insight into Uracil Stacking in Water from ab Initio Molecular Dynamics.
    Milovanović B; Kojić M; Petković M; Etinski M
    J Chem Theory Comput; 2018 May; 14(5):2621-2632. PubMed ID: 29621395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-bonding effects on infrared spectra from anharmonic computations: uracil-water complexes and uracil dimers.
    Fornaro T; Burini D; Biczysko M; Barone V
    J Phys Chem A; 2015 May; 119(18):4224-36. PubMed ID: 25867793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.