These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30714604)

  • 1. Modular soft robotic microdevices for dexterous biomanipulation.
    Özkale B; Parreira R; Bekdemir A; Pancaldi L; Özelçi E; Amadio C; Kaynak M; Stellacci F; Mooney DJ; Sakar MS
    Lab Chip; 2019 Feb; 19(5):778-788. PubMed ID: 30714604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing Microactuators for Soft Microrobots.
    Tyagi M; Spinks GM; Jager EWH
    Soft Robot; 2021 Feb; 8(1):19-27. PubMed ID: 32326869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating Tissue Mechanics
    Parreira R; Özelçi E; Sakar MS
    Front Robot AI; 2021; 8():649765. PubMed ID: 33869296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review.
    Lao Z; Xia N; Wang S; Xu T; Wu X; Zhang L
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective trapping and manipulation of microscale objects using mobile microvortices.
    Petit T; Zhang L; Peyer KE; Kratochvil BE; Nelson BJ
    Nano Lett; 2012 Jan; 12(1):156-60. PubMed ID: 22111870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems.
    Kaynak M; Dirix P; Sakar MS
    Adv Sci (Weinh); 2020 Oct; 7(20):2001120. PubMed ID: 33101852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs.
    Liu K; Cheng C; Cheng Z; Wang K; Ramesh R; Wu J
    Nano Lett; 2012 Dec; 12(12):6302-8. PubMed ID: 23157372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nano grating tunable MEMS optical filter for high-speed on-chip multispectral fluorescent detection.
    Truxal SC; Huang NT; Kurabayashi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6693-5. PubMed ID: 19964177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ integrated microrobots driven by artificial muscles built from biomolecular motors.
    Wang Y; Nitta T; Hiratsuka Y; Morishima K
    Sci Robot; 2022 Aug; 7(69):eaba8212. PubMed ID: 36001686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of piezoelectric microactuators based on β-poly (vinylidene fluoride) films for microfluidic applications.
    Cardoso VF; Correia RG; Rocha JG; Lanceros-Mendez S; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():903-6. PubMed ID: 21096978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel fabrication of soft microactuators with morphological computing using soft lithography.
    Tyagi M; Pan J; Jager EWH
    Microsyst Nanoeng; 2019; 5():44. PubMed ID: 31636933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromechanical properties of hydrogels measured with MEMS resonant sensors.
    Corbin EA; Millet LJ; Pikul JH; Johnson CL; Georgiadis JG; King WP; Bashir R
    Biomed Microdevices; 2013 Apr; 15(2):311-9. PubMed ID: 23247581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications.
    Ashraf MW; Tayyaba S; Afzulpurkar N
    Int J Mol Sci; 2011; 12(6):3648-704. PubMed ID: 21747700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.
    Yuan H; Cambron SD; Keynton RS
    J Vis Exp; 2015 Jun; (100):e52834. PubMed ID: 26132732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells.
    Liu Z; Liu Y; Chang Y; Seyf HR; Henry A; Mattheyses AL; Yehl K; Zhang Y; Huang Z; Salaita K
    Nat Methods; 2016 Feb; 13(2):143-6. PubMed ID: 26657558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel Micropillar Array for Temperature Sensing in Fluid.
    Seo SW; Song Y; Mustakim N
    IEEE Sens J; 2023 Sep; 23(17):19021-19027. PubMed ID: 37664783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parylene-based encapsulated fluid MEMS sensors.
    Meng E; Gutierrez C
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1039-41. PubMed ID: 19964947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned Magnetic Nanocomposites for Modularized and Recyclable Soft Microrobots.
    Shui L; Ni K; Wang Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43802-43814. PubMed ID: 36100583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.