These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30715044)

  • 1. Actuation of Flexible Membranes via Capillary Force: Single-Active-Surface Experiments.
    Barth C; Knospe C
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-low voltage electrowetting using graphite surfaces.
    Lomax DJ; Kant P; Williams AT; Patten HV; Zou Y; Juel A; Dryfe RA
    Soft Matter; 2016 Oct; 12(42):8798-8804. PubMed ID: 27722442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrowetting induced capillary oscillations on coalescence of compound droplets.
    Bansal S; Sen P
    J Colloid Interface Sci; 2018 Nov; 530():223-232. PubMed ID: 29982014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrowetting-based actuation of droplets for integrated microfluidics.
    Pollack MG; Shenderov AD; Fair RB
    Lab Chip; 2002 May; 2(2):96-101. PubMed ID: 15100841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of droplet motion under electrowetting actuation.
    Annapragada SR; Dash S; Garimella SV; Murthy JY
    Langmuir; 2011 Jul; 27(13):8198-204. PubMed ID: 21627144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-frequency electrowetting: application to drop evaporation gauging within a digital microsystem.
    Theisen J; Davoust L
    Langmuir; 2012 Jan; 28(1):1041-8. PubMed ID: 22054097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A small-gap electrostatic micro-actuator for large deflections.
    Conrad H; Schenk H; Kaiser B; Langa S; Gaudet M; Schimmanz K; Stolz M; Lenz M
    Nat Commun; 2015 Dec; 6():10078. PubMed ID: 26655557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A droplet energy harvesting and actuation system for self-powered digital microfluidics.
    Chen G; Liu X; Li S; Dong M; Jiang D
    Lab Chip; 2018 Mar; 18(7):1026-1034. PubMed ID: 29536066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.
    Sanada A; Tanaka N
    J Acoust Soc Am; 2012 Aug; 132(2):767-78. PubMed ID: 22894199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.
    Lee SA; Lee H; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    J Micromech Microeng; 2011 May; 21(5):54006. PubMed ID: 21886945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures.
    Lapierre F; Brunet P; Coffinier Y; Thomy V; Blossey R; Boukherroub R
    Faraday Discuss; 2010; 146():125-139; discussion 195-215, 395-403. PubMed ID: 21043418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a microliquid prism actuated by electrowetting.
    Lee DG; Park J; Bae J; Kim HY
    Lab Chip; 2013 Jan; 13(2):274-9. PubMed ID: 23165931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile Movements of Liquid Metal Droplet under Electrostatic Actuation in Alkaline Solutions.
    Hu Q; Jiang T; Jiang H
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32375247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slippery when wet: mobility regimes of confined drops in electrowetting.
    Baratian D; Ruiz-Gutiérrez É; Mugele F; Ledesma-Aguilar R
    Soft Matter; 2019 Sep; 15(35):7063-7070. PubMed ID: 31441482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrowetting on a lotus leaf.
    Feng JT; Wang FC; Zhao YP
    Biomicrofluidics; 2009 Apr; 3(2):22406. PubMed ID: 19693341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films.
    Boudot M; Elettro H; Grosso D
    ACS Nano; 2016 Nov; 10(11):10031-10040. PubMed ID: 27792305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.