These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 30715050)
1. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output. La M; Choi JH; Choi JY; Hwang TY; Kang J; Choi D Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715050 [TBL] [Abstract][Full Text] [Related]
2. Facile Tailoring of Contact Layer Characteristics of the Triboelectric Nanogenerator Based on Portable Imprinting Device. Cho S; Jang S; La M; Yun Y; Yu T; Park SJ; Choi D Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075240 [TBL] [Abstract][Full Text] [Related]
3. Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect. Jo S; Kim I; Jayababu N; Kim D Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260477 [TBL] [Abstract][Full Text] [Related]
4. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
5. A Novel Triboelectric Material Based on Deciduous Leaf for Energy Harvesting. Ding Z; Zou M; Yao P; Zhu Z; Fan L Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832727 [TBL] [Abstract][Full Text] [Related]
6. Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators. Jin S; Wang Y; Motlag M; Gao S; Xu J; Nian Q; Wu W; Cheng GJ Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29356129 [TBL] [Abstract][Full Text] [Related]
7. A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers. Zhang JH; Li Y; Hao X Nanotechnology; 2020 May; 31(21):215401. PubMed ID: 32018228 [TBL] [Abstract][Full Text] [Related]
8. Tribological Properties and Electrification Performance of Patterned Surface for Sliding-Mode Triboelectric Nanogenerator. Hu Y; Wang X; Li H; Li Z; Sun N Langmuir; 2019 Jul; 35(29):9396-9401. PubMed ID: 31251068 [TBL] [Abstract][Full Text] [Related]
9. Alternate-Layered MXene Composite Film-Based Triboelectric Nanogenerator with Enhanced Electrical Performance. Feng Y; He M; Liu X; Wang W; Yu A; Wan L; Zhai J Nanoscale Res Lett; 2021 May; 16(1):81. PubMed ID: 33970382 [TBL] [Abstract][Full Text] [Related]
10. Improving the Performance of Polydimethylsiloxane-Based Triboelectric Nanogenerators by Introducing CdS Particles into the Polydimethylsiloxane Layer. Mao J; Seo S Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999297 [TBL] [Abstract][Full Text] [Related]
11. Air-gap embedded triboelectric nanogenerator Kim I; Roh H; Choi W; Kim D Nanoscale; 2021 May; 13(19):8837-8847. PubMed ID: 33950055 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. Kim YW; Akin S; Yun H; Xu S; Wu W; Jun MB ACS Appl Mater Interfaces; 2022 Oct; 14(41):46410-46420. PubMed ID: 36198071 [TBL] [Abstract][Full Text] [Related]
13. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Shielding Layer and Shrouded-Tribo-Area Optimized Ternary Electrification Layered Architecture. An S; Fu S; He W; Li G; Xing P; Du Y; Wang J; Zhou S; Pu X; Hu C Small; 2023 Nov; 19(45):e2303277. PubMed ID: 37434035 [TBL] [Abstract][Full Text] [Related]
14. A Multifunction Freestanding Liquid-Solid Triboelectric Nanogenerator Based on Low-Frequency Mechanical Sloshing. Huang T; Hao X; Li M; He B; Sun W; Zhang K; Liao L; Pan Y; Huang J; Qin A ACS Appl Mater Interfaces; 2022 Dec; 14(49):54716-54724. PubMed ID: 36453536 [TBL] [Abstract][Full Text] [Related]
15. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the Output Performance of a Triboelectric Nanogenerator Based on Modified Polyimide and Sandwich-Structured Nanocomposite Film. Zhou J; Lu C; Lan D; Zhang Y; Lin Y; Wan L; Wei W; Liang Y; Guo D; Liu Y; Yu W Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985950 [TBL] [Abstract][Full Text] [Related]
18. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Yong H; Chung J; Choi D; Jung D; Cho M; Lee S Sci Rep; 2016 Sep; 6():33977. PubMed ID: 27653976 [TBL] [Abstract][Full Text] [Related]
19. Exploring Wettability: A Key to Optimizing Liquid-Solid Triboelectric Nanogenerators. Kulandaivel A; Potu S; Rajaboina RK; Khanapuram UK ACS Appl Mater Interfaces; 2024 Oct; 16(43):58029-58059. PubMed ID: 39413400 [TBL] [Abstract][Full Text] [Related]
20. A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting. Xia K; Chi Y; Fu J; Zhu Z; Zhang H; Du C; Xu Z Microsyst Nanoeng; 2019; 5():26. PubMed ID: 31636921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]