These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30715051)

  • 1. Novel Variable Radius Spiral⁻Shaped Micromixer: From Numerical Analysis to Experimental Validation.
    Mehrdel P; Karimi S; Farré-Lladós J; Casals-Terré J
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units.
    Nishu IZ; Samad MF
    Heliyon; 2023 Apr; 9(4):e14745. PubMed ID: 37025873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical micromixer.
    Wang CT; Hu YC; Hu TY
    Sensors (Basel); 2009; 9(7):5379-89. PubMed ID: 22346704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixing Performance Analysis and Optimal Design of a Novel Passive Baffle Micromixer.
    Zheng Y; Liu Y; Tang C; Liu B; Zou H; Li W; Zhang H
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Simulation of a Passive Micromixer with Gourd-Shaped Channel.
    Hong W; Shi H; Huang Z; Long M; Xu H; Liu Z
    J Nanosci Nanotechnol; 2019 Jan; 19(1):206-212. PubMed ID: 30327024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and Experimental Study of Cross-Sectional Effects on the Mixing Performance of the Spiral Microfluidics.
    Rouhi O; Razavi Bazaz S; Niazmand H; Mirakhorli F; Mas-Hafi S; A Amiri H; Miansari M; Ebrahimi Warkiani M
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Passive Micromixers with a Comparative Analysis.
    Raza W; Hossain S; Kim KY
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32349452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids.
    Ganguli A; Bhatt V; Yagodnitsyna A; Pinjari D; Pandit A
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixing Enhancement in Serpentine Micromixers with a Non-Rectangular Cross-Section.
    Clark J; Kaufman M; Fodor PS
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.
    Natsuhara D; Saito R; Okamoto S; Nagai M; Shibata T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Analysis of Mixing Performance in an Electroosmotic Micromixer with Cosine Channel Walls.
    Chen Z; Wang Y; Zhou S
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Planar Microfluidic Mixer Based on Logarithmic Spirals.
    Scherr T; Quitadamo C; Tesvich P; Park DS; Tiersch T; Hayes D; Choi JW; Nandakumar K; Monroe WT
    J Micromech Microeng; 2012; 22(5):55019. PubMed ID: 23956497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical and Experimental Investigation on a "Tai Chi"-Shaped Planar Passive Micromixer.
    Xia A; Shen C; Wei C; Meng L; Hu Z; Zhang L; Chen M; Li L; He N; Hao X
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
    Taheri RA; Goodarzi V; Allahverdi A
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cost-effective serpentine micromixer utilizing ellipse curve.
    Wang X; Liu Z; Cai Y; Wang B; Luo X
    Anal Chim Acta; 2021 Apr; 1155():338355. PubMed ID: 33766315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Mixing Analysis of a Passive Micromixer with Circulation Promoters.
    Juraeva M; Kang DJ
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective splitting-and-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications.
    Feng X; Ren Y; Jiang H
    Biomicrofluidics; 2013; 7(5):54121. PubMed ID: 24396530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study.
    Naas TT; Hossain S; Aslam M; Rahman A; Hoque ASM; Kim KY; Islam SMR
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33800534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.