BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30715248)

  • 1. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China.
    Wu SS; Hernández M; Deng YC; Han C; Hong X; Xu J; Zhong WH; Deng H
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30715248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy].
    Deng H; Cai LC; Jiang YB; Zhong WH
    Huan Jing Ke Xue; 2016 Jan; 37(1):359-65. PubMed ID: 27078978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment.
    Liu L; Lu Y; Zhong W; Meng L; Deng H
    Sci Total Environ; 2020 Dec; 748():141544. PubMed ID: 32798883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of Gypsum on CH
    Hu XY; Xiang QJ; Mu ZJ
    Huan Jing Ke Xue; 2018 Aug; 39(8):3894-3900. PubMed ID: 29998699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Winter drainage and film mulching cultivation mitigated CH
    Ji Y; Xu Y; Zhao M; Zhang G; Conrad R; Liu P; Feng Z; Ma J; Xu H
    J Environ Manage; 2022 Dec; 323():116194. PubMed ID: 36115239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem.
    Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO
    FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil.
    Ma K; Conrad R; Lu Y
    Appl Environ Microbiol; 2012 Jan; 78(2):445-54. PubMed ID: 22101043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.
    Liu D; Tago K; Hayatsu M; Tokida T; Sakai H; Nakamura H; Usui Y; Hasegawa T; Asakawa S
    Microbes Environ; 2016 Sep; 31(3):349-56. PubMed ID: 27600710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission.
    Pump J; Pratscher J; Conrad R
    Environ Microbiol; 2015 Jul; 17(7):2254-60. PubMed ID: 25367104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of soil temperature, methanogens and methanotrophs on methane emissions from cold waterlogged paddy fields.
    Xu X; Zhang M; Xiong Y; Yuan J; Shaaban M; Zhou W; Hu R
    J Environ Manage; 2020 Jun; 264():110421. PubMed ID: 32217313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The process of methanogenesis in paddy fields under different elevated CO
    Wang Y; Hu Z; Shen L; Liu C; Islam ARMT; Wu Z; Dang H; Chen S
    Sci Total Environ; 2021 Jun; 773():145629. PubMed ID: 33940739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.
    Bao QL; Xiao KQ; Chen Z; Yao HY; Zhu YG
    FEMS Microbiol Ecol; 2014 May; 88(2):372-85. PubMed ID: 24579928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China.
    Liu H; Wu X; Li Z; Wang Q; Liu D; Liu G
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8731-8743. PubMed ID: 28213705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of mcrA Gene Decreases Upon Prolonged Non-flooding Period in a Methanogenic Archaeal Community of a Paddy-Upland Rotational Field Soil.
    Liu D; Nishida M; Takahashi T; Asakawa S
    Microb Ecol; 2018 Apr; 75(3):751-760. PubMed ID: 28890994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.
    Kouzuma A; Kaku N; Watanabe K
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9521-6. PubMed ID: 25394406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of long-term organic and conventional fertilization on bacterial communities involved in bioelectricity production from paddy field-microbial fuel cells.
    Kamaraj Y; Punamalai G; Kandasamy S; Kasinathan K
    Arch Microbiol; 2020 Oct; 202(8):2279-2289. PubMed ID: 32535790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications].
    Deng H; Xue HJ; Jiang YB; Zhong WH
    Huan Jing Ke Xue; 2015 Oct; 36(10):3926-34. PubMed ID: 26841633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electricity generation in rice paddy-field microbial fuel cells supplemented with iron powders.
    Matsumoto A; Nagoya M; Tsuchiya M; Suga K; Inohana Y; Hirose A; Yamada S; Hirano S; Ito Y; Tanaka S; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2020 Dec; 136():107625. PubMed ID: 32781329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals.
    Kato S; Hashimoto K; Watanabe K
    Environ Microbiol; 2012 Jul; 14(7):1646-54. PubMed ID: 22004041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands.
    Zhang J; Jiao S; Lu Y
    Sci Total Environ; 2018 May; 622-623():664-675. PubMed ID: 29223893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.