These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Chen W; Dong Y; Saqib HSA; Vasseur L; Zhou W; Zheng L; Lai Y; Ma X; Lin L; Xu X; Bai J; He W; You M Insect Biochem Mol Biol; 2020 Apr; 119():103316. PubMed ID: 31953191 [TBL] [Abstract][Full Text] [Related]
3. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Ahn SJ; Betzin F; Gikonyo MW; Yang ZL; Köllner TG; Beran F Sci Rep; 2019 Oct; 9(1):15725. PubMed ID: 31673017 [TBL] [Abstract][Full Text] [Related]
4. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella. Ma XL; He WY; Chen W; Xu XJ; Qi WP; Zou MM; You YC; Baxter SW; Wang P; You MS Insect Sci; 2018 Dec; 25(6):946-958. PubMed ID: 28569426 [TBL] [Abstract][Full Text] [Related]
5. Glucosinolate Sulfatases-Sulfatase-Modifying Factors System Enables a Crucifer-Specialized Moth To Pre-detoxify Defensive Glucosinolate of the Host Plant. Chen W; Saqib HSA; Xu X; Dong Y; Zheng L; Lai Y; Jing X; Lu Z; Sun L; You M; He W J Agric Food Chem; 2022 Sep; 70(36):11179-11191. PubMed ID: 36043275 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Biological Activity of Sulfamate-Adamantane Derivatives as Glucosinolate Sulfatase Inhibitors. Li D; Zaraei SO; Sbenati RM; Ravi A; Wen Y; Zeng L; Wang J; El-Gamal MI; Xu H J Agric Food Chem; 2023 Oct; 71(42):15476-15484. PubMed ID: 37818663 [TBL] [Abstract][Full Text] [Related]
7. Inhibitor of Glucosinolate Sulfatases as a Potential Friendly Insecticide to Control Li D; Wen Y; Ou Z; Yu Y; Zhao C; Lin F; Hanhong Xu J Agric Food Chem; 2022 Oct; 70(42):13528-13537. PubMed ID: 36251030 [TBL] [Abstract][Full Text] [Related]
8. A heterozygous moth genome provides insights into herbivory and detoxification. You M; Yue Z; He W; Yang X; Yang G; Xie M; Zhan D; Baxter SW; Vasseur L; Gurr GM; Douglas CJ; Bai J; Wang P; Cui K; Huang S; Li X; Zhou Q; Wu Z; Chen Q; Liu C; Wang B; Li X; Xu X; Lu C; Hu M; Davey JW; Smith SM; Chen M; Xia X; Tang W; Ke F; Zheng D; Hu Y; Song F; You Y; Ma X; Peng L; Zheng Y; Liang Y; Chen Y; Yu L; Zhang Y; Liu Y; Li G; Fang L; Li J; Zhou X; Luo Y; Gou C; Wang J; Wang J; Yang H; Wang J Nat Genet; 2013 Feb; 45(2):220-5. PubMed ID: 23313953 [TBL] [Abstract][Full Text] [Related]
9. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Sun R; Gols R; Harvey JA; Reichelt M; Gershenzon J; Pandit SS; Vassão DG Mol Ecol; 2020 Oct; 29(20):4014-4031. PubMed ID: 32853463 [TBL] [Abstract][Full Text] [Related]
10. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
11. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Badenes-Perez FR; Reichelt M; Gershenzon J; Heckel DG Phytochemistry; 2013 Feb; 86():36-43. PubMed ID: 23218016 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Kliebenstein D; Pedersen D; Barker B; Mitchell-Olds T Genetics; 2002 May; 161(1):325-32. PubMed ID: 12019246 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L. Kaur T; Bhat R; Khajuria M; Vyas R; Kumari A; Nadda G; Vishwakarma R; Vyas D Plant Sci; 2016 Sep; 250():1-9. PubMed ID: 27457978 [TBL] [Abstract][Full Text] [Related]
15. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404 [TBL] [Abstract][Full Text] [Related]
16. Interspecific Differences in the Larval Performance of Pieris Butterflies (Lepidoptera: Pieridae) Are Associated with Differences in the Glucosinolate Profiles of Host Plants. Okamura Y; Tsuzuki N; Kuroda S; Sato A; Sawada Y; Hirai MY; Murakami M J Insect Sci; 2019 May; 19(3):. PubMed ID: 31039584 [TBL] [Abstract][Full Text] [Related]
18. The genetic basis of a plant-insect coevolutionary key innovation. Wheat CW; Vogel H; Wittstock U; Braby MF; Underwood D; Mitchell-Olds T Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20427-31. PubMed ID: 18077380 [TBL] [Abstract][Full Text] [Related]
19. New Insights into the Chen W; Amir MB; Liao Y; Yu H; He W; Lu Z J Agric Food Chem; 2023 Jul; 71(29):10952-10969. PubMed ID: 37462091 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.). Lin H; Xia X; Yu L; Vasseur L; Gurr GM; Yao F; Yang G; You M BMC Genomics; 2015 Dec; 16():1054. PubMed ID: 26653876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]