BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30715423)

  • 21. Functional integration of a semi-synthetic azido-queuosine derivative into translation and a tRNA modification circuit.
    Bessler L; Kaur N; Vogt LM; Flemmich L; Siebenaller C; Winz ML; Tuorto F; Micura R; Ehrenhofer-Murray AE; Helm M
    Nucleic Acids Res; 2022 Oct; 50(18):10785-10800. PubMed ID: 36169220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence.
    Haumont E; Droogmans L; Grosjean H
    Eur J Biochem; 1987 Oct; 168(1):219-25. PubMed ID: 3117541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An antisuppressor mutation of Schizosaccharomyces pombe affects the post-transcriptional modification of the "wobble" base in the anticodon of tRNAs.
    Heyer WD; Thuriaux P; Kohli J; Ebert P; Kersten H; Gehrke C; Kuo KC; Agris PF
    J Biol Chem; 1984 Mar; 259(5):2856-62. PubMed ID: 6559822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes.
    Guy MP; Phizicky EM
    RNA; 2015 Jan; 21(1):61-74. PubMed ID: 25404562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome recoding by tRNA modifications.
    Tuorto F; Lyko F
    Open Biol; 2016 Dec; 6(12):. PubMed ID: 27974624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria.
    Ran W; Higgs PG
    Mol Biol Evol; 2010 Sep; 27(9):2129-40. PubMed ID: 20403966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes.
    Xia X
    Gene; 2005 Jan; 345(1):13-20. PubMed ID: 15716092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae.
    Percudani R; Ottonello S
    Mol Biol Evol; 1999 Dec; 16(12):1752-62. PubMed ID: 10605116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue.
    Wilkinson CR; Bartlett R; Nurse P; Bird AP
    Nucleic Acids Res; 1995 Jan; 23(2):203-10. PubMed ID: 7862522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of queuosine modification of endogenous
    Tittle JM; Schwark DG; Biddle W; Schmitt MA; Fisk JD
    Front Mol Biosci; 2022; 9():938114. PubMed ID: 36120552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing.
    Katanski CD; Watkins CP; Zhang W; Reyer M; Miller S; Pan T
    Nucleic Acids Res; 2022 Sep; 50(17):e99. PubMed ID: 35713550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.
    Lamichhane TN; Blewett NH; Crawford AK; Cherkasova VA; Iben JR; Begley TJ; Farabaugh PJ; Maraia RJ
    Mol Cell Biol; 2013 Aug; 33(15):2918-29. PubMed ID: 23716598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels.
    Zhang W; Xu R; Matuszek Ż; Cai Z; Pan T
    RNA; 2020 Sep; 26(9):1291-1298. PubMed ID: 32439717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ribosome's response to codon-anticodon mismatches.
    Daviter T; Gromadski KB; Rodnina MV
    Biochimie; 2006 Aug; 88(8):1001-11. PubMed ID: 16716484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conflict between translation initiation and elongation in vertebrate mitochondrial genomes.
    Xia X; Huang H; Carullo M; Betrán E; Moriyama EN
    PLoS One; 2007 Feb; 2(2):e227. PubMed ID: 17311091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate.
    Hung SH; Elliott GI; Ramkumar TR; Burtnyak L; McGrenaghan CJ; Alkuzweny S; Quaiyum S; Iwata-Reuyl D; Pan X; Green BD; Kelly VP; de Crécy-Lagard V; Swairjo MA
    Nucleic Acids Res; 2023 Jan; 51(2):935-951. PubMed ID: 36610787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of diet on the queuosine family of tRNAs of germ-free mice.
    Farkas WR
    J Biol Chem; 1980 Jul; 255(14):6832-5. PubMed ID: 6771278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferences of AAA/AAG codon recognition by modified nucleosides, τm
    Sonawane KD; Kamble AS; Fandilolu PM
    J Biomol Struct Dyn; 2018 Dec; 36(16):4182-4196. PubMed ID: 29243556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family.
    Zallot R; Brochier-Armanet C; Gaston KW; Forouhar F; Limbach PA; Hunt JF; de Crécy-Lagard V
    ACS Chem Biol; 2014 Aug; 9(8):1812-25. PubMed ID: 24911101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1.
    Li H; Zhu D; Wu J; Ma Y; Cai C; Chen Y; Qin M; Dai H
    RNA Biol; 2021 Dec; 18(12):2531-2545. PubMed ID: 34110975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.