BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30715596)

  • 1. Computer-aided design of microfluidic resistive network using circuit partition and CFD-based optimization and application in microalgae assessment for marine ecological toxicity.
    Han B; Zheng G; Wei J; Yang Y; Lu L; Zhang Q; Wang Y
    Bioprocess Biosyst Eng; 2019 May; 42(5):785-797. PubMed ID: 30715596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal motility measurement microfluidic chip for toxicity assessment of heavy metals.
    Zheng G; Wang Y; Qin J
    Anal Bioanal Chem; 2012 Dec; 404(10):3061-9. PubMed ID: 22995999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-Aided Design of Microfluidic Circuits.
    Tsur EE
    Annu Rev Biomed Eng; 2020 Jun; 22():285-307. PubMed ID: 32343907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated microfluidic device in marine microalgae culture for toxicity screening application.
    Zheng G; Wang Y; Wang Z; Zhong W; Wang H; Li Y
    Mar Pollut Bull; 2013 Jul; 72(1):231-43. PubMed ID: 23664765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae.
    Shakeel Syed M; Rafeie M; Henderson R; Vandamme D; Asadnia M; Ebrahimi Warkiani M
    Lab Chip; 2017 Jul; 17(14):2459-2469. PubMed ID: 28695927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.
    Lee K; Kim C; Kim Y; Jung K; Ahn B; Kang JY; Oh KW
    Biomed Microdevices; 2010 Apr; 12(2):297-309. PubMed ID: 20077018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui.
    Liu G; Chai X; Shao Y; Hu L; Xie Q; Wu H
    J Environ Sci (China); 2011; 23(2):330-5. PubMed ID: 21517009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Pressure-Driven and Channel-Based Microfluidics on Different Abstract Levels: A Case Study.
    Takken M; Wille R
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition.
    Feng CY; Wei JF; Li YJ; Yang YS; Wang YH; Lu L; Zheng GX
    Analyst; 2016 Mar; 141(5):1761-71. PubMed ID: 26824675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments.
    Zeng F; Huang J; Meng C; Zhu F; Chen J; Li Y
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):169-80. PubMed ID: 26563485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.
    Pawar SB
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):31-45. PubMed ID: 28929325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous harvesting of microalgae by new microfluidic technology for particle separation.
    Hønsvall BK; Altin D; Robertson LJ
    Bioresour Technol; 2016 Jan; 200():360-5. PubMed ID: 26512859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems.
    Papacek S; Jablonsky J; Petera K
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):93. PubMed ID: 30458763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic microalgae detection system for cellular physiological response based on an object detection algorithm.
    Zhou S; Chen T; Fu ES; Zhou T; Shi L; Yan H
    Lab Chip; 2024 May; 24(10):2762-2773. PubMed ID: 38682283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Optimization of a Microfluidic Virus Detection Cartridge: A Numerical and Experimental Study.
    Şenel EB; Kizilelma B; Tamdoğan E; Yorulmaz M
    J Biomech Eng; 2023 Oct; 145(10):. PubMed ID: 37382621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip".
    Bakuova N; Toktarkan S; Dyussembinov D; Azhibek D; Rakhymzhanov A; Kostas K; Kulsharova G
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.