These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30715749)
1. High cell density culture of baker's yeast FX-2 based on pH-stat coupling with respiratory quotient. Li X; Huang C; Xu CQ; Tan YL; Luo YD; Zou K; Li JH; Deng ZS; Zheng Z; Ye H; Zhang XL; Zheng N Biotechnol Appl Biochem; 2019 May; 66(3):389-397. PubMed ID: 30715749 [TBL] [Abstract][Full Text] [Related]
2. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. Shang F; Wen S; Wang X; Tan T J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289 [TBL] [Abstract][Full Text] [Related]
3. Fed-batch culture strategy for high yield of baker's yeast with high fermentative activity. Li Y; Chen J; Song Q; Lun S; Katakura Y Chin J Biotechnol; 1997; 13(2):105-13. PubMed ID: 9343709 [TBL] [Abstract][Full Text] [Related]
4. Fed batch culture of Saccharomyces cerevisiae: a perspective of computer control to enhance the productivity in baker's yeast cultivation. Aiba S; Nagai S; Nishizawa Y Biotechnol Bioeng; 1976 Jul; 18(7):1001-16. PubMed ID: 782581 [TBL] [Abstract][Full Text] [Related]
5. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Imura M; Iwakiri R; Bamba T; Fukusaki E J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822 [TBL] [Abstract][Full Text] [Related]
6. Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. Shang F; Wen S; Wang X; Tan T J Biotechnol; 2006 Apr; 122(3):285-92. PubMed ID: 16488499 [TBL] [Abstract][Full Text] [Related]
7. Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter. Nagamori E; Fujita H; Shimizu K; Tokuhiro K; Ishida N; Takahashi H J Biosci Bioeng; 2013 Feb; 115(2):193-5. PubMed ID: 23021912 [TBL] [Abstract][Full Text] [Related]
8. Carbon dioxide inhibition of yeast growth in biomass production. Chen SL; Gutmains F Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407 [TBL] [Abstract][Full Text] [Related]
9. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
10. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Belo I; Pinheiro R; Mota M Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615 [TBL] [Abstract][Full Text] [Related]
11. Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations. Mesquita TJB; Sargo CR; Fuzer JR; Paredes SAH; Giordano RC; Horta ACL; Zangirolami TC Microb Cell Fact; 2019 Sep; 18(1):150. PubMed ID: 31484570 [TBL] [Abstract][Full Text] [Related]
12. Development of a pH-controlled fed-batch system for budding yeast. Porro D; Martegani E; Tura A; Ranzi BM Res Microbiol; 1991 Jun; 142(5):535-9. PubMed ID: 1947425 [TBL] [Abstract][Full Text] [Related]
13. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production. López-Alvarez A; Díaz-Pérez AL; Sosa-Aguirre C; Macías-Rodríguez L; Campos-García J J Biosci Bioeng; 2012 May; 113(5):614-8. PubMed ID: 22280963 [TBL] [Abstract][Full Text] [Related]
14. Improving industrial full-scale production of baker's yeast by optimizing aeration control. Blanco CA; Rayo J; Giralda JM J AOAC Int; 2008; 91(3):607-13. PubMed ID: 18567307 [TBL] [Abstract][Full Text] [Related]
15. Control of continuous fed-batch fermentation process using neural network based model predictive controller. Kiran AU; Jana AK Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided baker's yeast fermentations. Wang HY; Cooney CL; Wang DI Biotechnol Bioeng; 1977 Jan; 19(1):69-86. PubMed ID: 321045 [TBL] [Abstract][Full Text] [Related]
17. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. van Hoek P; de Hulster E; van Dijken JP; Pronk JT Biotechnol Bioeng; 2000 Jun; 68(5):517-23. PubMed ID: 10797237 [TBL] [Abstract][Full Text] [Related]
18. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Náhlík J; Hrnčiřík P; Mareš J; Rychtera M; Kent CA Biotechnol Prog; 2017 May; 33(3):838-848. PubMed ID: 28127893 [TBL] [Abstract][Full Text] [Related]
20. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. Hagman A; Piškur J PLoS One; 2015; 10(1):e0116942. PubMed ID: 25617754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]