These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30715859)

  • 41. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.
    Li C; Xu J; Ma B
    Analyst; 2015 Feb; 140(3):701-5. PubMed ID: 25434979
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale femtoliter droplet array for digital counting of single biomolecules.
    Kim SH; Iwai S; Araki S; Sakakihara S; Iino R; Noji H
    Lab Chip; 2012 Dec; 12(23):4986-91. PubMed ID: 22961607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the flow topology inside droplets moving in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2014 Sep; 14(18):3611-20. PubMed ID: 25072660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip.
    Kim SJ; Song YA; Skipper PL; Han J
    Anal Chem; 2006 Dec; 78(23):8011-9. PubMed ID: 17134134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Femtoliter Droplet Array for Massively Parallel Protein Synthesis from Single DNA Molecules.
    Zhang Y; Kurosawa K; Nishiura D; Tei M; Tsudome M
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: effects of pyruvate group.
    Li R; Feke DL
    Carbohydr Polym; 2015 Jun; 124():216-21. PubMed ID: 25839814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant.
    Wang A; Li Y; Yang X; Bao M; Cheng H
    Mar Pollut Bull; 2017 May; 118(1-2):275-280. PubMed ID: 28283177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation.
    Zhong L; Truex MJ; Kananizadeh N; Li Y; Lea AS; Yan X
    J Contam Hydrol; 2015; 175-176():17-25. PubMed ID: 25720668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel method of generating water-in-oil(W∕O) droplets in a microchannel with grooved walls.
    Kim J; Byun D; Hong J
    Biomicrofluidics; 2011 Mar; 5(1):14106. PubMed ID: 21483660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flow field induced particle accumulation inside droplets in rectangular channels.
    Hein M; Moskopp M; Seemann R
    Lab Chip; 2015 Jul; 15(13):2879-86. PubMed ID: 26032835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emulsions stabilized by high acyl gellan and KCl.
    Vilela JA; Cunha RL
    Food Res Int; 2017 Jan; 91():47-54. PubMed ID: 28290326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.