These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30716365)

  • 1. Interaction modes between nanosized graphene flakes and liposomes: Adsorption, insertion and membrane fusion.
    Santiago R; Reigada R
    Biochim Biophys Acta Gen Subj; 2019 Apr; 1863(4):723-731. PubMed ID: 30716365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Graphene Nanoparticles and Lipid Membranes Displaying Different Liquid Orderings: A Molecular Dynamics Study.
    Puigpelat E; Ignés-Mullol J; Sagués F; Reigada R
    Langmuir; 2019 Dec; 35(50):16661-16668. PubMed ID: 31750663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.
    Sastre J; Mannelli I; Reigada R
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2872-2882. PubMed ID: 28780125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Interactions between Liposomes and Hydrophobic Nanosheets.
    Li Z; Zhang Y; Ma J; Meng Q; Fan J
    Small; 2019 Feb; 15(6):e1804992. PubMed ID: 30589212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles.
    Marzouq A; Morgenstein L; Huang-Zhu CA; Yudovich S; Atkins A; Grupi A; Van Lehn RC; Weiss S
    Langmuir; 2024 May; 40(20):10477-10485. PubMed ID: 38710504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.
    Pluhackova K; Wassenaar TA; Kirsch S; Böckmann RA
    J Phys Chem B; 2015 Mar; 119(12):4396-408. PubMed ID: 25719673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.
    Mirjanian D; Dickey AN; Hoh JH; Woolf TB; Stevens MJ
    J Phys Chem B; 2010 Sep; 114(34):11061-8. PubMed ID: 20701307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets.
    Mao J; Guo R; Yan LT
    Biomaterials; 2014 Jul; 35(23):6069-77. PubMed ID: 24780168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into the resistance of phospholipid heads to the membrane penetration of graphene nanosheets.
    Li Z; Zhu X; Li J; Zhong J; Zhang J; Fan J
    Nanoscale; 2022 Apr; 14(14):5384-5391. PubMed ID: 35319035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene can wreak havoc with cell membranes.
    Dallavalle M; Calvaresi M; Bottoni A; Melle-Franco M; Zerbetto F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4406-14. PubMed ID: 25648559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails.
    Stevens MJ; Hoh JH; Woolf TB
    Phys Rev Lett; 2003 Oct; 91(18):188102. PubMed ID: 14611319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of cell entry of graphene nanosheet.
    Guo R; Mao J; Yan LT
    Biomaterials; 2013 Jun; 34(17):4296-301. PubMed ID: 23489926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure.
    Tan C; Zhang Y; Abbas S; Feng B; Zhang X; Xia W; Xia S
    J Agric Food Chem; 2015 Aug; 63(32):7277-85. PubMed ID: 26173584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol Extraction from Cell Membrane by Graphene Nanosheets: A Computational Study.
    Zhang L; Xu B; Wang X
    J Phys Chem B; 2016 Feb; 120(5):957-64. PubMed ID: 26812232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species.
    de Athayde Moncorvo Collado A; Dupuy FG; Morero RD; Minahk C
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1479-87. PubMed ID: 27063609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong hydrophobic interaction between graphene oxide and supported lipid bilayers revealed by AFM.
    Hu X; Lei H; Zhang X; Zhang Y
    Microsc Res Tech; 2016 Aug; 79(8):721-6. PubMed ID: 27252153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and simulation of the liposomal model by using a coarse-grained molecular dynamics approach towards drug delivery goals.
    Parchekani J; Allahverdi A; Taghdir M; Naderi-Manesh H
    Sci Rep; 2022 Feb; 12(1):2371. PubMed ID: 35149771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.