These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30716365)

  • 21. Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications.
    Liu J
    Langmuir; 2016 May; 32(18):4393-404. PubMed ID: 27093351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature.
    Lee DE; Lew MG; Woodbury DJ
    Chem Phys Lipids; 2013 Jan; 166():45-54. PubMed ID: 23200791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium molybdate nanoparticles formation in egg phosphatidyl choline based liposome caused by liposome fusion.
    Yamasaki S; Kurita S; Ochiai A; Hashimoto M; Sueki K; Utsunomiya S
    J Colloid Interface Sci; 2018 Nov; 530():473-480. PubMed ID: 29990783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipid vesicle fusion on micropatterned polymeric bilayer substrates.
    Okazaki T; Morigaki K; Taguchi T
    Biophys J; 2006 Sep; 91(5):1757-66. PubMed ID: 16766614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene.
    Tabaei SR; Ng WB; Cho SJ; Cho NJ
    ACS Appl Mater Interfaces; 2016 May; 8(18):11875-80. PubMed ID: 27092949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene Oxide and Lipid Membranes: Size-Dependent Interactions.
    Frost R; Svedhem S; Langhammer C; Kasemo B
    Langmuir; 2016 Mar; 32(11):2708-17. PubMed ID: 26907859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Single-Stranded DNA Coatings on the Interaction between Graphene Nanoflakes and Lipid Bilayers.
    Moore TC; Yang AH; Ogungbesan O; Hartkamp R; Iacovella CR; Zhang Q; McCabe C
    J Phys Chem B; 2019 Sep; 123(36):7711-7721. PubMed ID: 31405277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of hydrophobic polymers with model lipid bilayers.
    Bochicchio D; Panizon E; Monticelli L; Rossi G
    Sci Rep; 2017 Jul; 7(1):6357. PubMed ID: 28744008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Application of Coarse-Grained Molecular Dynamics to the Evaluation of Liposome Physical Stability.
    Chen L; Wu Z; Wu X; Liao Y; Dai X; Shi X
    AAPS PharmSciTech; 2020 May; 21(5):138. PubMed ID: 32419093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics.
    Grafmüller A; Shillcock J; Lipowsky R
    Biophys J; 2009 Apr; 96(7):2658-75. PubMed ID: 19348749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes.
    Su CF; Merlitz H; Rabbel H; Sommer JU
    J Phys Chem Lett; 2017 Sep; 8(17):4069-4076. PubMed ID: 28797162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.
    Reid KA; Davis CM; Dyer RB; Kindt JT
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene oxide and lipid membranes: interactions and nanocomposite structures.
    Frost R; Jönsson GE; Chakarov D; Svedhem S; Kasemo B
    Nano Lett; 2012 Jul; 12(7):3356-62. PubMed ID: 22657914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates.
    Hirano A; Yoshikawa H; Matsushita S; Yamada Y; Shiraki K
    Langmuir; 2012 Feb; 28(8):3887-95. PubMed ID: 22276744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure.
    Wlodek M; Kolasinska-Sojka M; Szuwarzynski M; Kereïche S; Kovacik L; Zhou L; Islas L; Warszynski P; Briscoe WH
    Nanoscale; 2018 Sep; 10(37):17965-17974. PubMed ID: 30226255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets.
    Chen X; Chen B
    Environ Sci Technol; 2015 May; 49(10):6181-9. PubMed ID: 25877513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.