These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 30716546)

  • 1. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.
    Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC
    Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.
    Ahn H; Jo HY; Lee YJ; Kim GY
    J Environ Radioact; 2016 Jul; 158-159():30-7. PubMed ID: 27060782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides.
    Tzou YM; Wang MK; Loeppert RH
    Arch Environ Contam Toxicol; 2003 May; 44(4):445-53. PubMed ID: 12712274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides.
    Papassiopi N; Vaxevanidou K; Christou C; Karagianni E; Antipas GS
    J Hazard Mater; 2014 Jan; 264():490-7. PubMed ID: 24238809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl
    Ahn H; Jo HY; Ryu JH; Koh YK
    Environ Technol; 2017 Feb; 38(4):467-473. PubMed ID: 27266724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidation of Cr(III) to Cr(VI) in the environment by atmospheric oxygen during the bush fires.
    Panichev N; Mabasa W; Ngobeni P; Mandiwana K; Panicheva S
    J Hazard Mater; 2008 May; 153(3):937-41. PubMed ID: 17980482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes.
    Wang W; Chen C; Huang X; Jiang S; Xiong J; Li J; Hong M; Zhang J; Guan Y; Feng X; Tan W; Liu F; Ding LJ; Yin H
    Environ Sci Technol; 2024 Oct; 58(41):18391-18403. PubMed ID: 39360895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II).
    Hu Y; Xue Q; Tang J; Fan X; Chen H
    Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.
    Brose DA; James BR
    Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic fragments newly released from heat-treated peat soils create synergies with dissolved organic carbon to enhance Cr(VI) removal.
    Chen KY; Liu YT; Hsieh YC; Tzou YM
    Ecotoxicol Environ Saf; 2020 Sep; 201():110800. PubMed ID: 32540617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.