BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 30716546)

  • 1. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.
    Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC
    Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.
    Ahn H; Jo HY; Lee YJ; Kim GY
    J Environ Radioact; 2016 Jul; 158-159():30-7. PubMed ID: 27060782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides.
    Tzou YM; Wang MK; Loeppert RH
    Arch Environ Contam Toxicol; 2003 May; 44(4):445-53. PubMed ID: 12712274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides.
    Papassiopi N; Vaxevanidou K; Christou C; Karagianni E; Antipas GS
    J Hazard Mater; 2014 Jan; 264():490-7. PubMed ID: 24238809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl
    Ahn H; Jo HY; Ryu JH; Koh YK
    Environ Technol; 2017 Feb; 38(4):467-473. PubMed ID: 27266724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidation of Cr(III) to Cr(VI) in the environment by atmospheric oxygen during the bush fires.
    Panichev N; Mabasa W; Ngobeni P; Mandiwana K; Panicheva S
    J Hazard Mater; 2008 May; 153(3):937-41. PubMed ID: 17980482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II).
    Hu Y; Xue Q; Tang J; Fan X; Chen H
    Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.
    Brose DA; James BR
    Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic fragments newly released from heat-treated peat soils create synergies with dissolved organic carbon to enhance Cr(VI) removal.
    Chen KY; Liu YT; Hsieh YC; Tzou YM
    Ecotoxicol Environ Saf; 2020 Sep; 201():110800. PubMed ID: 32540617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.