BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 30716922)

  • 21. Caffeine adsorption of montmorillonite in coffee extracts.
    Shiono T; Yamamoto K; Yotsumoto Y; Yoshida A
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1591-1597. PubMed ID: 28622119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Espresso coffee design based on non-monotonic granulometric distribution of aromatic profile.
    De Vivo A; Tricarico MC; Sarghini F
    Food Res Int; 2019 Sep; 123():650-661. PubMed ID: 31285015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species.
    Gutiérrez Ortiz AL; Berti F; Solano Sánchez W; Navarini L; Colomban S; Crisafulli P; Forzato C
    Food Chem; 2019 Jul; 286():459-466. PubMed ID: 30827633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-Platelet Aggregation and Anti-Cyclooxygenase Activities for a Range of Coffee Extracts (
    Hutachok N; Angkasith P; Chumpun C; Fucharoen S; Mackie IJ; Porter JB; Srichairatanakool S
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of processing on chlorogenic acid content of commercially available coffee.
    Mills CE; Oruna-Concha MJ; Mottram DS; Gibson GR; Spencer JP
    Food Chem; 2013 Dec; 141(4):3335-40. PubMed ID: 23993490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of roasting on the formation of chlorogenic acid lactones in coffee.
    Farah A; de Paulis T; Trugo LC; Martin PR
    J Agric Food Chem; 2005 Mar; 53(5):1505-13. PubMed ID: 15740032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity.
    Hu G; Peng X; Wang X; Li X; Li X; Qiu M
    Food Res Int; 2020 Jun; 132():109121. PubMed ID: 32331680
    [No Abstract]   [Full Text] [Related]  

  • 28. Process characterization and optimization of cold brew coffee: effect of pressure, temperature, time and solvent volume on yield, caffeine and phenol content.
    Kyroglou S; Thanasouli K; Vareltzis P
    J Sci Food Agric; 2021 Aug; 101(11):4789-4798. PubMed ID: 33527437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acidity and Antioxidant Activity of Cold Brew Coffee.
    Rao NZ; Fuller M
    Sci Rep; 2018 Oct; 8(1):16030. PubMed ID: 30375458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity.
    Moon JK; Yoo HS; Shibamoto T
    J Agric Food Chem; 2009 Jun; 57(12):5365-9. PubMed ID: 19530715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How the variance of some extraction variables may affect the quality of espresso coffees served in coffee shops.
    Severini C; Derossi A; Fiore AG; De Pilli T; Alessandrino O; Del Mastro A
    J Sci Food Agric; 2016 Jul; 96(9):3023-31. PubMed ID: 26399679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive profile and microbiological safety of Coffea arabica and Coffea canephora beverages obtained by innovative cold extraction methods (cold brews).
    Cerca NF; DePaula J; Calado VMA; Antônio L Miguel M; Farah A
    Food Res Int; 2023 Dec; 174(Pt 2):113667. PubMed ID: 37981379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caffeine Extraction from Raw and Roasted Coffee Beans.
    Chiang D; Lin CY; Hu CT; Lee S
    J Food Sci; 2018 Apr; 83(4):975-983. PubMed ID: 29577294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees.
    Angelino D; Tassotti M; Brighenti F; Del Rio D; Mena P
    Sci Rep; 2018 Dec; 8(1):17874. PubMed ID: 30552404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical and Biological Characterization of Green and Processed Coffee Beans from
    Gallardo-Ignacio J; Santibáñez A; Oropeza-Mariano O; Salazar R; Montiel-Ruiz RM; Cabrera-Hilerio S; Gonzáles-Cortazar M; Cruz-Sosa F; Nicasio-Torres P
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: the influence of espresso machines and coffee cultivars.
    Caprioli G; Cortese M; Maggi F; Minnetti C; Odello L; Sagratini G; Vittori S
    Int J Food Sci Nutr; 2014 Jun; 65(4):465-9. PubMed ID: 24467514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (
    Muchtaridi M; Lestari D; Khairul Ikram NK; Gazzali AM; Hariono M; Wahab HA
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34199752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutraceutical compounds: Echinoids, flavonoids, xanthones and caffeine identified and quantitated in the leaves of Coffea arabica trees from three regions of Brazil.
    de Almeida RF; Trevisan MTS; Thomaziello RA; Breuer A; Klika KD; Ulrich CM; Owen RW
    Food Res Int; 2019 Jan; 115():493-503. PubMed ID: 30599970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans.
    Badmos S; Lee SH; Kuhnert N
    Food Res Int; 2019 Dec; 126():108544. PubMed ID: 31732084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Espresso coffee residues: a valuable source of unextracted compounds.
    Cruz R; Cardoso MM; Fernandes L; Oliveira M; Mendes E; Baptista P; Morais S; Casal S
    J Agric Food Chem; 2012 Aug; 60(32):7777-84. PubMed ID: 22812683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.