These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30717017)
1. Monkey orange fruit juice improves the nutritional quality of a maize-based diet. Ngadze RT; Linnemann AR; Fogliano V; Verkerk R Food Res Int; 2019 Feb; 116():870-877. PubMed ID: 30717017 [TBL] [Abstract][Full Text] [Related]
2. Effect of heat and pectinase maceration on phenolic compounds and physicochemical quality of Strychnos cocculoides juice. Ngadze RT; Verkerk R; Nyanga LK; Fogliano V; Ferracane R; Troise AD; Linnemann AR PLoS One; 2018; 13(8):e0202415. PubMed ID: 30118502 [TBL] [Abstract][Full Text] [Related]
3. Comparative intake of white- versus orange-colored maize by Zambian children in the context of promotion of biofortified maize. Nuss ET; Arscott SA; Bresnahan K; Pixley KV; Rocheford T; Hotz C; Siamusantu W; Chileshe J; Tanumihardjo SA Food Nutr Bull; 2012 Mar; 33(1):63-71. PubMed ID: 22624299 [TBL] [Abstract][Full Text] [Related]
4. Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions. Rocchetti G; Giuberti G; Gallo A; Bernardi J; Marocco A; Lucini L Food Res Int; 2018 Jun; 108():183-191. PubMed ID: 29735048 [TBL] [Abstract][Full Text] [Related]
5. Modulating Phenolic Bioaccessibility and Glycemic Response of Starch-Based Foods in Wistar Rats by Physical Complexation between Starch and Phenolic Acid. Li M; Griffin LE; Corbin S; Neilson AP; Ferruzzi MG J Agric Food Chem; 2020 Nov; 68(46):13257-13266. PubMed ID: 32689794 [TBL] [Abstract][Full Text] [Related]
6. Bioaccessibility of pro-vitamin A carotenoids is minimally affected by non pro-vitamin a xanthophylls in maize (Zea mays sp.). Thakkar SK; Failla ML J Agric Food Chem; 2008 Dec; 56(23):11441-6. PubMed ID: 18991453 [TBL] [Abstract][Full Text] [Related]
7. Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets. Martens BMJ; Flécher T; de Vries S; Schols HA; Bruininx EMAM; Gerrits WJJ Br J Nutr; 2019 May; 121(10):1124-1136. PubMed ID: 30837011 [TBL] [Abstract][Full Text] [Related]
8. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products. Bazolli RS; Vasconcellos RS; de-Oliveira LD; Sá FC; Pereira GT; Carciofi AC J Anim Sci; 2015 Jun; 93(6):2956-66. PubMed ID: 26115282 [TBL] [Abstract][Full Text] [Related]
9. Potential contribution of African green leafy vegetables and maize porridge composite meals to iron and zinc nutrition. Kruger J; Mongwaketse T; Faber M; van der Hoeven M; Smuts CM Nutrition; 2015 Sep; 31(9):1117-23. PubMed ID: 26233869 [TBL] [Abstract][Full Text] [Related]
10. Fluidized-bed drying of black rice grains: Impact on cooking properties, in vitro starch digestibility, and bioaccessibility of phenolic compounds. Lang GH; Lindemann IDS; Goebel JT; Ferreira CD; Acunha TDS; de Oliveira M J Food Sci; 2020 Jun; 85(6):1717-1724. PubMed ID: 32406950 [TBL] [Abstract][Full Text] [Related]
11. Fermentation of dietary starch in humans. Ahmed R; Segal I; Hassan H Am J Gastroenterol; 2000 Apr; 95(4):1017-20. PubMed ID: 10763953 [TBL] [Abstract][Full Text] [Related]
13. Starch and antioxidant compound release during in vitro gastrointestinal digestion of gluten-free pasta. Camelo-Méndez GA; Agama-Acevedo E; Rosell CM; de J Perea-Flores M; Bello-Pérez LA Food Chem; 2018 Oct; 263():201-207. PubMed ID: 29784308 [TBL] [Abstract][Full Text] [Related]
14. Acid induced reduction of the glycaemic response to starch-rich foods: the salivary α-amylase inhibition hypothesis. Freitas D; Le Feunteun S Food Funct; 2018 Oct; 9(10):5096-5102. PubMed ID: 30230497 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (Zea mays L.) porridges with varying phytate concentrations during cooking and in vitro digestion. Lux PE; Fuchs L; Wiedmaier-Czerny N; Frank J Food Chem; 2022 Jun; 378():132053. PubMed ID: 35033718 [TBL] [Abstract][Full Text] [Related]
16. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Rodrigo MJ; Cilla A; Barberá R; Zacarías L Food Funct; 2015 Jun; 6(6):1950-9. PubMed ID: 25996796 [TBL] [Abstract][Full Text] [Related]
17. Bioaccessibility of polyphenols from selected cereal grains and legumes as influenced by food acidulants. Hithamani G; Srinivasan K J Sci Food Agric; 2017 Jan; 97(2):621-628. PubMed ID: 27122477 [TBL] [Abstract][Full Text] [Related]
18. Phenolics from Whole Grain Oat Products as Modifiers of Starch Digestion and Intestinal Glucose Transport. Li M; Koecher K; Hansen L; Ferruzzi MG J Agric Food Chem; 2017 Aug; 65(32):6831-6839. PubMed ID: 28681602 [TBL] [Abstract][Full Text] [Related]
19. Zinc bioaccessibility in finger millet porridge blended with zinc-dense mushroom. Luvitaa KS; Wambui MA; Fredrick M; Otieno OD Heliyon; 2023 Aug; 9(8):e18901. PubMed ID: 37636462 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical Properties and in Vitro Digestibility of Cooked Regular and Nondarkening Cranberry Beans (Phaseolus vulgaris L.) and Their Effects on Bioaccessibility, Phenolic Composition, and Antioxidant Activity. Chen PX; Dupuis JH; Marcone MF; Pauls PK; Liu R; Liu Q; Tang Y; Zhang B; Tsao R J Agric Food Chem; 2015 Dec; 63(48):10448-58. PubMed ID: 26479447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]