BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30717072)

  • 1. Feasibility and safety of intraoperative BOLD functional MRI cerebrovascular reactivity to evaluate extracranial-to-intracranial bypass efficacy.
    Muscas G; Bas van Niftrik CH; Fierstra J; Piccirelli M; Sebök M; Burkhardt JK; Valavanis A; Pangalu A; Regli L; Bozinov O
    Neurosurg Focus; 2019 Feb; 46(2):E7. PubMed ID: 30717072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term changes in cerebrovascular reactivity following EC-IC bypass for intracranial steno-occlusive disease.
    Rosen C; McKetton L; Russell J; Sam K; Poublanc J; Crawley A; Han JS; Sobczyk O; Duffin J; Mandell DM; Tymianski M; Fisher JA; Mikulis DJ; Venkatraghavan L
    J Clin Neurosci; 2018 Aug; 54():77-82. PubMed ID: 29907385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Extracranial-to-Intracranial Bypass on Cerebral Vasoreactivity: A 4D Flow MRI Pilot Study.
    Callen AL; Caton MT; Rutledge C; Raper D; Narvid J; Villanueva-Meyer JE; Abla A
    J Neuroimaging; 2020 Sep; 30(5):587-592. PubMed ID: 32862480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in cerebral hemodynamic parameters and outcomes after superficial temporal artery-middle cerebral artery bypass in patients with severe stenoocclusive disease of the intracranial internal carotid or middle cerebral arteries.
    Low SW; Teo K; Lwin S; Yeo LL; Paliwal PR; Ahmad A; Sinha AK; Teoh HL; Wong LY; Chong VF; Seet RC; Chan BP; Yeo TT; Chou N; Sharma VK
    J Neurosurg; 2015 Sep; 123(3):662-9. PubMed ID: 26023999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical factors influencing the development of extracranial-intracranial bypass graft for steno-occlusive cerebrovascular disease.
    Nomura S; Yamaguchi K; Ishikawa T; Kawashima A; Okada Y; Kawamata T
    Neurosurg Focus; 2019 Feb; 46(2):E5. PubMed ID: 30717071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors related to improvement of cerebrovascular reserve after superficial temporal artery to middle cerebral artery anastomosis for patients with atherosclerotic steno-occlusive disease.
    Otsuka M; Kikkawa Y; Kamide T; Suzuki K; Shibata A; Ikeda T; Kurita H
    Acta Neurochir (Wien); 2019 Apr; 161(4):799-805. PubMed ID: 30778681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-augmentation STA-MCA bypass for acute and subacute ischemic stroke due to internal carotid artery occlusion and the role of advanced neuroimaging with hemodynamic and flow-measurement in the decision-making: preliminary data.
    Sebök M; Höbner LM; Fierstra J; Schubert T; Wegener S; Kulcsár Z; Luft AR; Regli L; Esposito G
    Quant Imaging Med Surg; 2024 Jan; 14(1):777-788. PubMed ID: 38223058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative neurophysiological monitoring of extracranial-intracranial bypass procedures.
    Dengler J; Cabraja M; Faust K; Picht T; Kombos T; Vajkoczy P
    J Neurosurg; 2013 Jul; 119(1):207-14. PubMed ID: 23662820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery.
    Mandell DM; Han JS; Poublanc J; Crawley AP; Fierstra J; Tymianski M; Fisher JA; Mikulis DJ
    AJNR Am J Neuroradiol; 2011 Apr; 32(4):721-7. PubMed ID: 21436343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk of intraoperative ischemia due to temporary vessel occlusion during standard extracranial-intracranial arterial bypass surgery.
    Horn P; Scharf J; Peña-Tapia P; Vajkoczy P
    J Neurosurg; 2008 Mar; 108(3):464-9. PubMed ID: 18312092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in superficial temporal artery blood flow and cerebral hemodynamics after extracranial-intracranial bypass surgery in moyamoya disease and atherothrombotic carotid occlusion.
    Fujimoto S; Toyoda K; Inoue T; Jinnouchi J; Kitazono T; Okada Y
    J Neurol Sci; 2013 Feb; 325(1-2):10-4. PubMed ID: 23228360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Hemodynamic Changes and Hyperperfusion Risk After Extracranial-to-Intracranial Bypass Surgery Using Intraoperative Indocyanine Green-Based Flow Analysis.
    Rennert RC; Strickland BA; Ravina K; Bakhsheshian J; Russin JJ
    World Neurosurg; 2018 Jun; 114():352-360. PubMed ID: 29626683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-based evaluation of cerebral revascularization using near-infrared indocyanine green videoangiography.
    Januszewski J; Beecher JS; Chalif DJ; Dehdashti AR
    Neurosurg Focus; 2014 Feb; 36(2):E14. PubMed ID: 24484252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery.
    Hirai Y; Fujimoto S; Toyoda K; Inoue T; Uwatoko T; Makihara N; Yasumori K; Ibayashi S; Iida M; Okada Y
    Cerebrovasc Dis; 2005; 20(6):463-9. PubMed ID: 16230852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.
    Fierstra J; Burkhardt JK; van Niftrik CH; Piccirelli M; Pangalu A; Kocian R; Neidert MC; Valavanis A; Regli L; Bozinov O
    Magn Reson Med; 2017 Feb; 77(2):806-813. PubMed ID: 26918794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk factors for neurological worsening and symptomatic watershed infarction in internal carotid artery aneurysm treated by extracranial-intracranial bypass using radial artery graft.
    Matsukawa H; Tanikawa R; Kamiyama H; Tsuboi T; Noda K; Ota N; Miyata S; Oda J; Takeda R; Tokuda S; Kamada K
    J Neurosurg; 2016 Aug; 125(2):239-46. PubMed ID: 26566202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved White Matter Cerebrovascular Reactivity after Revascularization in Patients with Steno-Occlusive Disease.
    McKetton L; Venkatraghavan L; Rosen C; Mandell DM; Sam K; Sobczyk O; Poublanc J; Gray E; Crawley A; Duffin J; Fisher JA; Mikulis DJ
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):45-50. PubMed ID: 30573457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-Dimensional Flow MRI Analysis of Cerebral Blood Flow Before and After High-Flow Extracranial-Intracranial Bypass Surgery With Internal Carotid Artery Ligation.
    Orita E; Murai Y; Sekine T; Takagi R; Amano Y; Ando T; Iwata K; Obara M; Kumita S
    Neurosurgery; 2019 Jul; 85(1):58-64. PubMed ID: 29757425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of indirect extracranial-intracranial bypass in the treatment of symptomatic intracranial atheroocclusive disease.
    Komotar RJ; Starke RM; Otten ML; Merkow MB; Garrett MC; Marshall RS; Elkind MS; Connolly ES
    J Neurosurg; 2009 May; 110(5):896-904. PubMed ID: 19199456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral hyperperfusion syndrome after superficial temporal artery-middle cerebral artery bypass for severe intracranial steno-occlusive disease: a case control study.
    Teo K; Choy DK; Lwin S; Ning C; Yeo TT; Shen L; Chong VF; Teoh HL; Seet RC; Chan BP; Sharma AK; Sharma VK
    Neurosurgery; 2013 Jun; 72(6):936-42; discussion 942-3. PubMed ID: 23407293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.