These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 30717146)
1. Transcriptional Regulation of Aflatoxin Biosynthesis and Conidiation in Hua SST; Sarreal SBL; Chang PK; Yu J Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30717146 [No Abstract] [Full Text] [Related]
2. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Yang K; Geng Q; Song F; He X; Hu T; Wang S; Tian J Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977505 [TBL] [Abstract][Full Text] [Related]
3. Dual culture of atoxigenic and toxigenic strains of Aspergillus flavus to gain insight into repression of aflatoxin biosynthesis and fungal interaction. Hua SST; Parfitt DE; Sarreal SBL; Sidhu G Mycotoxin Res; 2019 Nov; 35(4):381-389. PubMed ID: 31161589 [TBL] [Abstract][Full Text] [Related]
4. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Chang PK; Hua SS Lett Appl Microbiol; 2007 Feb; 44(2):131-7. PubMed ID: 17257250 [TBL] [Abstract][Full Text] [Related]
5. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Hu Y; Yang G; Zhang D; Liu Y; Li Y; Lin G; Guo Z; Wang S; Zhuang Z Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30036940 [No Abstract] [Full Text] [Related]
6. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Wang P; Xu J; Chang PK; Liu Z; Kong Q Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432 [TBL] [Abstract][Full Text] [Related]
7. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Du W; Obrian GR; Payne GA Food Addit Contam; 2007 Oct; 24(10):1043-50. PubMed ID: 17886176 [TBL] [Abstract][Full Text] [Related]
8. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids. Chang PK; Hua SS; Sarreal SB; Li RW Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375 [TBL] [Abstract][Full Text] [Related]
9. Nonaflatoxigenic Aspergillus flavus TX9-8 competitively prevents aflatoxin accumulation by A. flavus isolates of large and small sclerotial morphotypes. Chang PK; Hua SS Int J Food Microbiol; 2007 Mar; 114(3):275-9. PubMed ID: 17140692 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of Aspergillus flavus strains in China. Mamo FT; Shang B; Selvaraj JN; Wang Y; Liu Y J Microbiol; 2018 Feb; 56(2):119-127. PubMed ID: 29392555 [TBL] [Abstract][Full Text] [Related]
11. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
12. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Chang PK; Scharfenstein LL; Mack B; Ehrlich KC Appl Environ Microbiol; 2012 Nov; 78(21):7557-63. PubMed ID: 22904054 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of atoxigenic Aspergillus flavus from southern China as biocontrol agents against aflatoxin contamination in corn and peanuts. Rasheed U; Cotty PJ; Ain QU; Wang Y; Liu B Pestic Biochem Physiol; 2024 May; 201():105887. PubMed ID: 38685218 [TBL] [Abstract][Full Text] [Related]
14. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production. Cary JW; Harris-Coward P; Scharfenstein L; Mack BM; Chang PK; Wei Q; Lebar M; Carter-Wientjes C; Majumdar R; Mitra C; Banerjee S; Chanda A Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29023405 [TBL] [Abstract][Full Text] [Related]
15. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. Kiyota T; Hamada R; Sakamoto K; Iwashita K; Yamada O; Mikami S J Biosci Bioeng; 2011 May; 111(5):512-7. PubMed ID: 21342785 [TBL] [Abstract][Full Text] [Related]
16. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation. Verheecke C; Liboz T; Anson P; Zhu Y; Mathieu F Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):572-6. PubMed ID: 25632796 [TBL] [Abstract][Full Text] [Related]
17. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Kong Q; Chi C; Yu J; Shan S; Li Q; Li Q; Guan B; Nierman WC; Bennett JW Appl Microbiol Biotechnol; 2014 Jun; 98(11):5161-72. PubMed ID: 24652062 [TBL] [Abstract][Full Text] [Related]
18. Biological Control of Aflatoxin Contamination in U.S. Crops and the Use of Bioplastic Formulations of Aspergillus flavus Biocontrol Strains To Optimize Application Strategies. Abbas HK; Accinelli C; Shier WT J Agric Food Chem; 2017 Aug; 65(33):7081-7087. PubMed ID: 28420231 [TBL] [Abstract][Full Text] [Related]
19. Biological Control of Aflatoxin in Maize Grown in Serbia. Savić Z; Dudaš T; Loc M; Grahovac M; Budakov D; Jajić I; Krstović S; Barošević T; Krska R; Sulyok M; Stojšin V; Petreš M; Stankov A; Vukotić J; Bagi F Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32150883 [No Abstract] [Full Text] [Related]
20. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. Hong SB; Lee M; Kim DH; Chung SH; Shin HD; Samson RA J Microbiol; 2013 Dec; 51(6):766-72. PubMed ID: 24385353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]