These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3071733)

  • 1. The use of the luxA gene of the bacterial luciferase operon as a reporter gene.
    Olsson O; Koncz C; Szalay AA
    Mol Gen Genet; 1988 Dec; 215(1):1-9. PubMed ID: 3071733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products.
    Hill PJ; Swift S; Stewart GS
    Mol Gen Genet; 1991 Apr; 226(1-2):41-8. PubMed ID: 2034229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
    Corbisier P; Ji G; Nuyts G; Mergeay M; Silver S
    FEMS Microbiol Lett; 1993 Jun; 110(2):231-8. PubMed ID: 8349095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency T-DNA-mediated gene tagging in plants.
    Koncz C; Martini N; Mayerhofer R; Koncz-Kalman Z; Körber H; Redei GP; Schell J
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8467-71. PubMed ID: 2554318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the Escherichia coli chromosomal ars operon.
    Cai J; DuBow MS
    Can J Microbiol; 1996 Jul; 42(7):662-71. PubMed ID: 8764681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of LuxA and LuxB and its expression in E. coli, S. cerevisiae and D. melanogaster.
    Almashanu S; Musafia B; Hadar R; Suissa M; Kuhn J
    J Biolumin Chemilumin; 1990; 5(2):89-97. PubMed ID: 2110714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel monomeric luciferase enzymes as tools to study plant gene regulation in vivo.
    Olsson O; Nilsson O; Koncz C
    J Biolumin Chemilumin; 1990; 5(2):79-87. PubMed ID: 2186598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid engineering of bacterial reporter gene fusions by using Red recombination.
    Gerlach RG; Hölzer SU; Jäckel D; Hensel M
    Appl Environ Microbiol; 2007 Jul; 73(13):4234-42. PubMed ID: 17513596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of the beta and beta' subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms.
    Dykxhoorn DM; St Pierre R; Linn T
    Mol Microbiol; 1996 Feb; 19(3):483-93. PubMed ID: 8830239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of stable, single-copy luciferase gene fusions in Escherichia coli.
    Guzzo A; DuBow MS
    Arch Microbiol; 1991; 156(6):444-8. PubMed ID: 1723872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants.
    Sugihara J; Baldwin TO
    Biochemistry; 1988 Apr; 27(8):2872-80. PubMed ID: 2840951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The beta subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42 degrees C.
    Escher A; O'Kane DJ; Szalay AA
    Mol Gen Genet; 1991 Dec; 230(3):385-93. PubMed ID: 1685011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of transcriptional fusions to monitor gene expression: a cautionary tale.
    Forsberg AJ; Pavitt GD; Higgins CF
    J Bacteriol; 1994 Apr; 176(7):2128-32. PubMed ID: 8144484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of bioluminescent functions from Photobacterium leiognathi: analysis of luxA, luxB, luxG and neighboring genes.
    Illarionov BA; Blinov VM; Donchenko AP; Protopopova MV; Karginov VA; Mertvetsov NP; Gitelson JI
    Gene; 1990 Jan; 86(1):89-94. PubMed ID: 2311938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitive reporter gene system using bacterial luciferase based on a series of plasmid cloning vectors compatible with derivatives of pBR322.
    Manen D; Pougeon M; Damay P; Geiselmann J
    Gene; 1997 Feb; 186(2):197-200. PubMed ID: 9074496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene.
    Dattananda CS; Rajkumari K; Gowrishankar J
    J Bacteriol; 1991 Dec; 173(23):7481-90. PubMed ID: 1938945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.
    Li SF; DeMoss JA
    J Bacteriol; 1987 Oct; 169(10):4614-20. PubMed ID: 3308846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi.
    Olsson O; Escher A; Sandberg G; Schell J; Koncz C; Szalay AA
    Gene; 1989 Sep; 81(2):335-47. PubMed ID: 2680771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes.
    Boylan M; Pelletier J; Meighen EA
    J Biol Chem; 1989 Feb; 264(4):1915-8. PubMed ID: 2644245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.