These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30717403)

  • 1. Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage.
    Li B; He L; Li J; Li HW; Lu Z; Shao H
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
    Guitar A; Vigna G; Luppo MI
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):156-63. PubMed ID: 19627819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiVZrNb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties.
    Montero J; Zlotea C; Ek G; Crivello JC; Laversenne L; Sahlberg M
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti-30Nb-3Ag alloy with improved corrosion resistance and antibacterial properties for orthopedic and dental applications produced by mechanical alloying.
    Hussein MA; Kumar AM; Azeem MA; Sorour AA; Saravanan S
    J Mech Behav Biomed Mater; 2023 Jun; 142():105851. PubMed ID: 37068434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.
    Kuroda PAB; Buzalaf MAR; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys.
    Qian C; Qiu Y; He Z; Mu W; Tang Y; Wang H; Xie M; Ji W
    PLoS One; 2020; 15(12):e0242322. PubMed ID: 33296382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.
    Zhang E; Ren J; Li S; Yang L; Qin G
    Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone.
    Liu J; Lin Y; Bian D; Wang M; Lin Z; Chu X; Li W; Liu Y; Shen Z; Liu Y; Tong Y; Xu Z; Zhang Y; Zheng Y
    Acta Biomater; 2019 Oct; 98():50-66. PubMed ID: 30853611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an experimental Ti-Co alloy for dental restorations.
    Wang R; Welsch G
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1419-27. PubMed ID: 23744579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New stacking variant of Laves phase found in (Ti0.95 V0.05) Co2 alloy.
    Kitano Y; Akitoh SI; Mitarai M; Ohnishi K; Kitasaka K; Noguchi K; Numata M
    Microsc Res Tech; 1998 Feb; 40(4):277-83. PubMed ID: 9523761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of C content on the mechanical properties of Ti-Zr coatings.
    Rodríguez-Hernández MG; Jiménez O; Alvarado-Hernández F; Flores M; Andrade E; Canto CE; Ávila C; Espinoza-Beltrán F
    J Mech Behav Biomed Mater; 2015 Sep; 49():269-76. PubMed ID: 26056996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the wear and corrosion behaviors of Ti5Al2.5Fe and Ti6Al4V alloys produced by mechanical alloying method in simulated body fluid environment.
    Simsek I; Ozyurek D
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():357-363. PubMed ID: 30423718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution.
    Metikos-Huković M; Kwokal A; Piljac J
    Biomaterials; 2003 Sep; 24(21):3765-75. PubMed ID: 12818549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy.
    Fukui H; Yang W; Yamada S; Fujishiro Y; Morita A; Niinomi M
    Dent Mater J; 2001 Jun; 20(2):156-63. PubMed ID: 11523979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of Ti-7.5Mo-xFe alloys.
    Lin DJ; Lin JH; Ju CP
    Biomaterials; 2002 Apr; 23(8):1723-30. PubMed ID: 11950042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and microstructure of Ti-35.5Nb-5.7Ta beta alloy.
    Bartakova S; Prachar P; Dvorak I; Hruby V; Vanek J; Pospichal M; Svoboda E; Martikan A; Konecna H; Sedlak I
    Bratisl Lek Listy; 2015; 116(2):88-92. PubMed ID: 25665472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.