These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30717588)

  • 1. Expansion of the Petroleum Refinery Life Cycle Inventory Model to Support Characterization of a Full Suite of Commonly Tracked Impact Potentials.
    Young B; Hottle T; Hawkins T; Jamieson M; Cooney G; Motazedi K; Bergerson J
    Environ Sci Technol; 2019 Feb; 53(4):2238-2248. PubMed ID: 30717588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criteria Air Pollutant and Greenhouse Gases Emissions from U.S. Refineries Allocated to Refinery Products.
    Sun P; Young B; Elgowainy A; Lu Z; Wang M; Morelli B; Hawkins T
    Environ Sci Technol; 2019 Jun; 53(11):6556-6569. PubMed ID: 31051076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techno-Economic Evaluation of Technologies to Mitigate Greenhouse Gas Emissions at North American Refineries.
    Motazedi K; Abella JP; Bergerson JA
    Environ Sci Technol; 2017 Feb; 51(3):1918-1928. PubMed ID: 28001370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GHG Emissions Impact of Shifts in the Ratio of Gasoline to Diesel Production at U.S. Refineries: A PADD Level Analysis.
    Motazedi K; Posen ID; Bergerson JA
    Environ Sci Technol; 2018 Nov; 52(22):13609-13618. PubMed ID: 30354083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA.
    Lim SR; Lam CW; Schoenung JM
    J Environ Manage; 2011 Sep; 92(9):2235-40. PubMed ID: 21561706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U.S. refinery efficiency: impacts analysis and implications for fuel carbon policy implementation.
    Forman GS; Divita VB; Han J; Cai H; Elgowainy A; Wang M
    Environ Sci Technol; 2014 Jul; 48(13):7625-33. PubMed ID: 24870020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
    Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB
    Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a health effects-based priority ranking system for air emissions reductions from oil refineries in Canada.
    Gower S; Hicks J; Shortreed J; Craig L; McColl S
    J Toxicol Environ Health A; 2008; 71(1):81-5. PubMed ID: 18080898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A System for Standardizing and Combining U.S. Environmental Protection Agency Emissions and Waste Inventory Data.
    Young B; Ingwersen WW; Bergmann M; Hernandez-Betancur JD; Ghosh T; Bell E; Cashman S
    Appl Sci (Basel); 2022 Mar; 12(7):1-16. PubMed ID: 35686028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle emission distributions within the economy: implications for life cycle impact assessment.
    Norris GA
    Risk Anal; 2002 Oct; 22(5):919-30. PubMed ID: 12442989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of gasoline production and use in Chile.
    Morales M; Gonzalez-García S; Aroca G; Moreira MT
    Sci Total Environ; 2015 Feb; 505():833-43. PubMed ID: 25461086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the method and U.S. normalization database for Life Cycle Impact Assessment and sustainability metrics.
    Bare J; Gloria T; Norris G
    Environ Sci Technol; 2006 Aug; 40(16):5108-15. PubMed ID: 16955915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measured and estimated benzene and volatile organic carbon (VOC) emissions at a major U.S. refinery/chemical plant: Comparison and prioritization.
    Hoyt D; Raun LH
    J Air Waste Manag Assoc; 2015 Aug; 65(8):1020-31. PubMed ID: 26067830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimate of mercury emissions to the atmosphere from petroleum.
    Wilhelm SM
    Environ Sci Technol; 2001 Dec; 35(24):4704-10. PubMed ID: 11775142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China.
    Wei W; Lv Z; Yang G; Cheng S; Li Y; Wang L
    Environ Pollut; 2016 Nov; 218():681-688. PubMed ID: 27522407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.
    Pierobon F; Eastin IL; Ganguly I
    Biotechnol Biofuels; 2018; 11():139. PubMed ID: 29785206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Analysis of the Potential and Cost of the U.S. Refinery Sector Decarbonization.
    Sun P; Cappello V; Elgowainy A; Vyawahare P; Ma O; Podkaminer K; Rustagi N; Koleva M; Melaina M
    Environ Sci Technol; 2023 Jan; ():. PubMed ID: 36608330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis: a case study on alternative transportation fuels.
    Rogers K; Seager TP
    Environ Sci Technol; 2009 Mar; 43(6):1718-23. PubMed ID: 19368162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States.
    Jones DL
    J Air Waste Manag Assoc; 2010 Sep; 60(9):1118-43. PubMed ID: 20863056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.