These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 30717603)
1. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response. Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603 [TBL] [Abstract][Full Text] [Related]
2. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]
3. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410 [TBL] [Abstract][Full Text] [Related]
4. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Matthews BJ; Waxman DJ Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543 [TBL] [Abstract][Full Text] [Related]
5. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure. Rosa-Garrido M; Chapski DJ; Schmitt AD; Kimball TH; Karbassi E; Monte E; Balderas E; Pellegrini M; Shih TT; Soehalim E; Liem D; Ping P; Galjart NJ; Ren S; Wang Y; Ren B; Vondriska TM Circulation; 2017 Oct; 136(17):1613-1625. PubMed ID: 28802249 [TBL] [Abstract][Full Text] [Related]
6. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180 [TBL] [Abstract][Full Text] [Related]
7. GATA-1-dependent histone H3K27 acetylation mediates erythroid cell-specific chromatin interaction between CTCF sites. Kim YW; Kang Y; Kang J; Kim A FASEB J; 2020 Nov; 34(11):14736-14749. PubMed ID: 32924169 [TBL] [Abstract][Full Text] [Related]
8. CTCF and transcription influence chromatin structure re-configuration after mitosis. Zhang H; Lam J; Zhang D; Lan Y; Vermunt MW; Keller CA; Giardine B; Hardison RC; Blobel GA Nat Commun; 2021 Aug; 12(1):5157. PubMed ID: 34453048 [TBL] [Abstract][Full Text] [Related]
9. Chromatin Domain Organization of the TCRb Locus and Its Perturbation by Ectopic CTCF Binding. Rawat P; Jalan M; Sadhu A; Kanaujia A; Srivastava M Mol Cell Biol; 2017 May; 37(9):. PubMed ID: 28137913 [TBL] [Abstract][Full Text] [Related]
10. The structural and functional roles of CTCF in the regulation of cell type-specific and human disease-associated super-enhancers. Shin HY Genes Genomics; 2019 Mar; 41(3):257-265. PubMed ID: 30456521 [TBL] [Abstract][Full Text] [Related]
11. The Dynamic Chromatin Architecture of the Regenerating Liver. Wang AW; Wang YJ; Zahm AM; Morgan AR; Wangensteen KJ; Kaestner KH Cell Mol Gastroenterol Hepatol; 2020; 9(1):121-143. PubMed ID: 31629814 [TBL] [Abstract][Full Text] [Related]
12. Epigenomic analysis of Alzheimer's disease brains reveals diminished CTCF binding on genes involved in synaptic organization. Patel PJ; Ren Y; Yan Z Neurobiol Dis; 2023 Aug; 184():106192. PubMed ID: 37302762 [TBL] [Abstract][Full Text] [Related]
13. A tour of 3D genome with a focus on CTCF. Wang DC; Wang W; Zhang L; Wang X Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214 [TBL] [Abstract][Full Text] [Related]
14. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060 [TBL] [Abstract][Full Text] [Related]
15. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Ruiz-Velasco M; Kumar M; Lai MC; Bhat P; Solis-Pinson AB; Reyes A; Kleinsorg S; Noh KM; Gibson TJ; Zaugg JB Cell Syst; 2017 Dec; 5(6):628-637.e6. PubMed ID: 29199022 [TBL] [Abstract][Full Text] [Related]
16. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Kubo N; Ishii H; Xiong X; Bianco S; Meitinger F; Hu R; Hocker JD; Conte M; Gorkin D; Yu M; Li B; Dixon JR; Hu M; Nicodemi M; Zhao H; Ren B Nat Struct Mol Biol; 2021 Feb; 28(2):152-161. PubMed ID: 33398174 [TBL] [Abstract][Full Text] [Related]
17. CTCF: a Swiss-army knife for genome organization and transcription regulation. Braccioli L; de Wit E Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740 [TBL] [Abstract][Full Text] [Related]
18. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738 [TBL] [Abstract][Full Text] [Related]