BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30717647)

  • 1. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition.
    Weng SL; Kao HJ; Huang CH; Lee TY
    PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.
    Kao HJ; Weng SL; Huang KY; Kaunang FJ; Hsu JB; Huang CH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):137. PubMed ID: 29322938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SuccSite: Incorporating Amino Acid Composition and Informative k-spaced Amino Acid Pairs to Identify Protein Succinylation Sites.
    Kao HJ; Nguyen VN; Huang KY; Chang WC; Lee TY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):208-219. PubMed ID: 32592791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.
    Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY
    PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RF-GlutarySite: a random forest based predictor for glutarylation sites.
    Al-Barakati HJ; Saigo H; Newman RH; Kc DB
    Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.
    Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ
    PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier.
    Dou L; Li X; Zhang L; Xiang H; Xu L
    J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.
    Xie L; Wang G; Yu Z; Zhou M; Li Q; Huang H; Xie J
    J Proteome Res; 2016 Apr; 15(4):1379-85. PubMed ID: 26903315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Affinity Purified Antibodies against ε-Glutaryl-Lysine Residues in Proteins for Investigation of Glutarylated Proteins in Animal Tissues.
    Artiukhov AV; Kolesanova EF; Boyko AI; Chashnikova AA; Gnedoy SN; Kaehne T; Ivanova DA; Kolesnichenko AV; Aleshin VA; Bunik VI
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites.
    Ning Q; Qi Z; Wang Y; Deng A; Chen C
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.