These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30717650)
21. Prediction of N-linked glycosylation sites using position relative features and statistical moments. Akmal MA; Rasool N; Khan YD PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096 [TBL] [Abstract][Full Text] [Related]
22. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC. Ju Z; Cao JZ; Gu H J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214 [TBL] [Abstract][Full Text] [Related]
23. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences. Cai B; Jiang X BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649 [TBL] [Abstract][Full Text] [Related]
24. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites. Wang X; Yan R; Li J; Song J Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688 [TBL] [Abstract][Full Text] [Related]
25. Predict and Analyze Protein Glycation Sites with the mRMR and IFS Methods. Liu Y; Gu W; Zhang W; Wang J Biomed Res Int; 2015; 2015():561547. PubMed ID: 25961025 [TBL] [Abstract][Full Text] [Related]
26. iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC. Liu LM; Xu Y; Chou KC Med Chem; 2017; 13(6):552-559. PubMed ID: 28521678 [TBL] [Abstract][Full Text] [Related]
27. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434 [TBL] [Abstract][Full Text] [Related]
28. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information. Ma X; Guo J; Sun X J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488 [TBL] [Abstract][Full Text] [Related]
29. iProtGly-SS: A Tool to Accurately Predict Protein Glycation Site Using Structural-Based Features. Dehzangi I; Sharma A; Shatabda S Methods Mol Biol; 2022; 2499():125-134. PubMed ID: 35696077 [TBL] [Abstract][Full Text] [Related]
30. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features. Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307 [TBL] [Abstract][Full Text] [Related]
31. Efficient mapping of RNA-binding residues in RNA-binding proteins using local sequence features of binding site residues in protein-RNA complexes. Agarwal A; Kant S; Bahadur RP Proteins; 2023 Sep; 91(9):1361-1379. PubMed ID: 37254800 [TBL] [Abstract][Full Text] [Related]
32. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707 [TBL] [Abstract][Full Text] [Related]
33. RF-GlutarySite: a random forest based predictor for glutarylation sites. Al-Barakati HJ; Saigo H; Newman RH; Kc DB Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681 [TBL] [Abstract][Full Text] [Related]
34. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization. Ahmed S; Rahman A; Hasan MAM; Rahman J; Islam MKB; Ahmad S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3624-3634. PubMed ID: 34546927 [TBL] [Abstract][Full Text] [Related]
35. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine. Ning Q; Yu M; Ji J; Ma Z; Zhao X BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321 [TBL] [Abstract][Full Text] [Related]
36. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647 [TBL] [Abstract][Full Text] [Related]
37. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs. Ju Z; Cao JZ Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899 [TBL] [Abstract][Full Text] [Related]
38. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
39. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. Mohammad TA; Nagarajaram HA J Bioinform Comput Biol; 2011 Aug; 9(4):489-502. PubMed ID: 21776605 [TBL] [Abstract][Full Text] [Related]
40. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids. Xu Y; Ding J; Wu LY PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]