These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3071796)

  • 1. Regulation and function of transbilayer movement of phosphatidylserine in activated blood platelets and sickle cells.
    Zwaal RF; Bevers EM; Rosing J
    Prog Clin Biol Res; 1988; 282():181-92. PubMed ID: 3071796
    [No Abstract]   [Full Text] [Related]  

  • 2. Detection of phosphatidylserine surface exposure on human erythrocytes using annexin V-ferrofluid.
    Geldwerth D; Helley D; de Jong K; Sabolovic' D; Sestier C; Roger J; Pons JN; Freyssinet JM; Devaux PF; Kuypers FA
    Biochem Biophys Res Commun; 1999 Apr; 258(1):199-203. PubMed ID: 10222260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane phospholipid abnormalities in pathologic erythrocytes: a model for cell aging.
    Wagner G; Chiu DT; Schwartz RS; Lubin B
    Prog Clin Biol Res; 1985; 195():237-50. PubMed ID: 4059270
    [No Abstract]   [Full Text] [Related]  

  • 4. Membrane phospholipid organization in pathologic human erythrocytes.
    Lubin B; Chiu D
    Prog Clin Biol Res; 1982; 97():137-50. PubMed ID: 7156165
    [No Abstract]   [Full Text] [Related]  

  • 5. Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets.
    Williamson P; Bevers EM; Smeets EF; Comfurius P; Schlegel RA; Zwaal RF
    Biochemistry; 1995 Aug; 34(33):10448-55. PubMed ID: 7654698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydroxyurea on the membrane of erythrocytes and platelets in sickle cell anemia.
    Covas DT; de Lucena Angulo I; Vianna Bonini Palma P; Zago MA
    Haematologica; 2004 Mar; 89(3):273-80. PubMed ID: 15020264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red cell membrane remodeling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies.
    Liu SC; Yi SJ; Mehta JR; Nichols PE; Ballas SK; Yacono PW; Golan DE; Palek J
    J Clin Invest; 1996 Jan; 97(1):29-36. PubMed ID: 8550846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C as a measure of transbilayer phosphatidylserine asymmetry.
    Daleke DL; Huestis WH; Newton AC
    Anal Biochem; 1994 Feb; 217(1):33-40. PubMed ID: 8203737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia.
    de Jong K; Emerson RK; Butler J; Bastacky J; Mohandas N; Kuypers FA
    Blood; 2001 Sep; 98(5):1577-84. PubMed ID: 11520810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients.
    Wang RH; Phillips G; Medof ME; Mold C
    J Clin Invest; 1993 Sep; 92(3):1326-35. PubMed ID: 7690777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology.
    Hebbel RP
    Blood; 1991 Jan; 77(2):214-37. PubMed ID: 1985689
    [No Abstract]   [Full Text] [Related]  

  • 12. Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology.
    Stuart MJ; Setty BN
    Pediatr Pathol Mol Med; 2001; 20(1):27-46. PubMed ID: 12673843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylserine exposure and calcium-activated potassium efflux in platelets.
    Kerbiriou-Nabias D; Arachiche A; Dachary-Prigent J
    Br J Haematol; 2011 Oct; 155(2):268-70. PubMed ID: 21480861
    [No Abstract]   [Full Text] [Related]  

  • 14. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations.
    Wood BL; Gibson DF; Tait JF
    Blood; 1996 Sep; 88(5):1873-80. PubMed ID: 8781447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane and lipid involvement in blood coagulation.
    Zwaal RF
    Biochim Biophys Acta; 1978 Jul; 515(2):163-205. PubMed ID: 356885
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis.
    van Tits LJ; van Heerde WL; Landburg PP; Boderie MJ; Muskiet FA; Jacobs N; Duits AJ; Schnog JB
    Biochem Biophys Res Commun; 2009 Dec; 390(1):161-4. PubMed ID: 19799864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lactadherin in the phagocytosis of phosphatidylserine-expressing sickle red blood cells by macrophages.
    Dasgupta SK; Thiagarajan P
    Haematologica; 2005 Sep; 90(9):1267-8. PubMed ID: 16154850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
    Franck PF; Bevers EM; Lubin BH; Comfurius P; Chiu DT; Op den Kamp JA; Zwaal RF; van Deenen LL; Roelofsen B
    J Clin Invest; 1985 Jan; 75(1):183-90. PubMed ID: 3965502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of external surface potential and transmembrane potential on the passive transbilayer movement of phospholipids in the red blood cell membrane.
    Jänchen G; Libera J; Pomorski T; Müller P; Herrmann A; Bernhardt I
    Gen Physiol Biophys; 1996 Oct; 15(5):415-20. PubMed ID: 9228522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structural and functional alterations of the erythrocyte membrane in sickle cell anemia].
    Bursaux E; Poyart C
    Bull Eur Physiopathol Respir; 1983; 19(4):345-50. PubMed ID: 6354308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.