These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30717981)

  • 1. Non-invasive three-dimensional bone-vessel image fusion using black bone MRI based on FIESTA-C.
    Hayashi T; Fujima N; Hamaguchi A; Masuzuka T; Hida K; Kodera S
    Clin Radiol; 2019 Apr; 74(4):326.e15-326.e21. PubMed ID: 30717981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coloring Technique of Magnetic Resonance Angiography for Superficial Temporal Artery to Middle Cerebral Artery Bypass Surgery.
    Okazaki T; Irie S; Inagaki T; Saito O; Yamashina M; Hayase H; Nakagawa H; Nagahiro S; Saito K
    World Neurosurg; 2018 Apr; 112():e113-e118. PubMed ID: 29366994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved visualization of superficial temporal artery using segmented time-of-flight MR angiography with venous suppression at 7T.
    Wei N; Zhang Z; An J; Weng D; Zhuo Y
    Neuroradiology; 2018 Nov; 60(11):1243-1246. PubMed ID: 30244414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postoperative evaluation of superficial temporal artery-middle cerebral artery bypass using an MR angiography technique with combined white-blood and black-blood sequences.
    Tsuchiya K; Imai M; Nitatori T; Kimura T
    J Magn Reson Imaging; 2013 Sep; 38(3):671-6. PubMed ID: 23371861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of three-dimensional fast imaging employing steady-state acquisition MRI of large vessel occlusion for detecting occluded middle cerebral artery and internal carotid artery before acute mechanical thrombectomy.
    Sato K; Hijikata Y; Omura N; Miki T; Kakita H; Yoshida T; Shimizu F
    J Cerebrovasc Endovasc Neurosurg; 2021 Sep; 23(3):201-209. PubMed ID: 34332521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography.
    Fischer G; Stadie A; Schwandt E; Gawehn J; Boor S; Marx J; Oertel J
    Neurosurg Focus; 2009 May; 26(5):E20. PubMed ID: 19408999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D flow MRI assessment of extracranial-intracranial bypass: qualitative and quantitative evaluation of the hemodynamics.
    Sekine T; Takagi R; Amano Y; Murai Y; Orita E; Matsumura Y; Kumita S
    Neuroradiology; 2016 Mar; 58(3):237-44. PubMed ID: 26631076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of Preoperative 3D-CT Angiography of Uterine Artery in Patients with Uterine Cervical Cancer].
    Fujioka H; Kato T; Sone M; Horita T; Sugawara S; Tsukagoshi S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2017; 73(2):112-119. PubMed ID: 28216519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depiction of branch vessels arising from intracranial aneurysm sacs: Time-of-flight MR angiography versus CT angiography.
    Goto M; Kunimatsu A; Shojima M; Mori H; Abe O; Aoki S; Hayashi N; Gonoi W; Miyati T; Ino K; Yano K; Saito N; Ohtomo K
    Clin Neurol Neurosurg; 2014 Nov; 126():177-84. PubMed ID: 25270230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azygous anterior cerebral artery and associated aneurysms: detection and identification using 3-dimensional time-of-flight magnetic resonance angiography.
    Wan-Yin S; Ming-Hua L; Bin-Xian G; Yong-Dong L; Hua-Qiao T
    J Neuroimaging; 2014; 24(1):18-22. PubMed ID: 23163794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized 4D time-of-flight MR angiography using saturation pulse.
    Shibukawa S; Nishio H; Niwa T; Obara M; Miyati T; Hara T; Imai Y; Muro I
    J Magn Reson Imaging; 2016 Jun; 43(6):1320-6. PubMed ID: 26666670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-FIESTA Magnetic Resonance Angiography Fusion Imaging of Distal Segment of Occluded Middle Cerebral Artery.
    Kuribara T; Haraguchi K; Ogane K; Matsuura N; Ito T
    Neurol Med Chir (Tokyo); 2015; 55(10):805-8. PubMed ID: 26369877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The applied research of MRI with ASSET-EPI-FLAIR combined with 3D TOF MRA sequences in the assessment of patients with acute cerebral infarction.
    Lin Z; Guo Z; Qiu L; Yang W; Lin M
    Acta Radiol; 2016 Dec; 57(12):1515-1523. PubMed ID: 26853685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evaluation of three-dimensional anatomy of the superficial temporal artery using the volume rendering technique.
    Kuruoglu E; Cokluk C; Marangoz AH; Aydin K
    Turk Neurosurg; 2015; 25(2):285-8. PubMed ID: 26014014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation.
    Grayev A; Shimakawa A; Cousins J; Turski P; Brittain J; Reeder S
    J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-contrast MR angiography using three-dimensional balanced steady-state free-precession imaging for evaluation of stenosis in the celiac trunk and superior mesenteric artery: a preliminary comparative study with computed tomography angiography.
    Cardia PP; Penachim TJ; Prando A; Torres US; D'Ippólito G
    Br J Radiol; 2017 Jul; 90(1075):20170011. PubMed ID: 28590771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous acquisition of MR angiography and diagnostic images of abdomen at view-sharing multiarterial phases and comparing the effect of two different contrast agents.
    Noda Y; Goshima S; Namimoto T; Shinkawa N; Nakagawa M; Kajita K; Kawada H; Kawai N; Tanahashi Y; Matsuo M; Bae KT; Hirai T; Yamashita Y
    J Magn Reson Imaging; 2018 Jul; 48(1):102-110. PubMed ID: 29247585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Evaluation for Vertebral Artery Course Using 3D Magnetic Resonance Imaging with Computed Tomography -like Bone Contrast and Magnetic Resonance Angiography: A Proof of Concept Study.
    Inoue T; Maki S; Yokota H; Furuya T; Yoda T; Matsumoto K; Yunde A; Miura M; Shiratani Y; Nagashima Y; Maruyama J; Inoue M; Shiga Y; Inage K; Orita S; Masuda Y; Uno T; Yamazaki M; Ohtori S
    World Neurosurg; 2024 Jul; 187():e166-e173. PubMed ID: 38641248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.