These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30718306)

  • 1. Biochemical and structural investigation of sulfoacetaldehyde reductase from
    Zhou Y; Wei Y; Lin L; Xu T; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biochem J; 2019 Feb; 476(4):733-746. PubMed ID: 30718306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium
    Zhou Y; Wei Y; Nanjaraj Urs AN; Lin L; Xu T; Hu Y; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biosci Rep; 2019 Jun; 39(6):. PubMed ID: 31123167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New structural insights into bacterial sulfoacetaldehyde and taurine metabolism.
    Rohwerder T
    Biochem J; 2020 Apr; 477(8):1367-1371. PubMed ID: 32322897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1.
    Styp von Rekowski K; Denger K; Cook AM
    Arch Microbiol; 2005 Aug; 183(5):325-30. PubMed ID: 15883781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase.
    Krejčík Z; Hollemeyer K; Smits THM; Cook AM
    Microbiology (Reading); 2010 May; 156(Pt 5):1547-1555. PubMed ID: 20133363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pathway for Isethionate Dissimilation in Bacillus krulwichiae.
    Tong Y; Wei Y; Hu Y; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of NADP
    Blaise M; Van Wyk N; Banères-Roquet F; Guérardel Y; Kremer L
    Biochem J; 2017 Mar; 474(6):907-921. PubMed ID: 28126742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans.
    Brüggemann C; Denger K; Cook AM; Ruff J
    Microbiology (Reading); 2004 Apr; 150(Pt 4):805-816. PubMed ID: 15073291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium
    Peck SC; Denger K; Burrichter A; Irwin SM; Balskus EP; Schleheck D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3171-3176. PubMed ID: 30718429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family.
    Tanaka N; Nonaka T; Nakanishi M; Deyashiki Y; Hara A; Mitsui Y
    Structure; 1996 Jan; 4(1):33-45. PubMed ID: 8805511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of l-sorbose reductase from Gluconobacter frateurii complexed with NADPH and l-sorbose.
    Kubota K; Nagata K; Okai M; Miyazono K; Soemphol W; Ohtsuka J; Yamamura A; Saichana N; Toyama H; Matsushita K; Tanokura M
    J Mol Biol; 2011 Apr; 407(4):543-55. PubMed ID: 21277857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and activity of NADPH-dependent reductase Q1EQE0 from Streptomyces kanamyceticus, which catalyses the R-selective reduction of an imine substrate.
    Rodríguez-Mata M; Frank A; Wells E; Leipold F; Turner NJ; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2013 Jul; 14(11):1372-9. PubMed ID: 23813853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis.
    Fisher M; Kroon JT; Martindale W; Stuitje AR; Slabas AR; Rafferty JB
    Structure; 2000 Apr; 8(4):339-47. PubMed ID: 10801480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16.
    Weinitschke S; Hollemeyer K; Kusian B; Bowien B; Smits TH; Cook AM
    J Biol Chem; 2010 Nov; 285(46):35249-54. PubMed ID: 20693281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.
    Lokanath NK; Ohshima N; Takio K; Shiromizu I; Kuroishi C; Okazaki N; Kuramitsu S; Yokoyama S; Miyano M; Kunishima N
    J Mol Biol; 2005 Sep; 352(4):905-17. PubMed ID: 16126223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from
    Li M; Wei Y; Yin J; Lin L; Zhou Y; Hua G; Cao P; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biochem J; 2019 Jun; 476(11):1605-1619. PubMed ID: 31088892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual NADPH conformation in the crystal structure of a cinnamyl alcohol dehydrogenase from Helicobacter pylori in complex with NADP(H) and substrate docking analysis.
    Seo KH; Zhuang N; Chen C; Song JY; Kang HL; Rhee KH; Lee KH
    FEBS Lett; 2012 Feb; 586(4):337-43. PubMed ID: 22269576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants.
    Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ
    Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds.
    Kamitori S; Iguchi A; Ohtaki A; Yamada M; Kita K
    J Mol Biol; 2005 Sep; 352(3):551-8. PubMed ID: 16095619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.