These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30718670)

  • 1. Spatially Controlled Surface Modification of Porous Silicon for Sustained Drug Delivery Applications.
    Zhang DX; Yoshikawa C; Welch NG; Pasic P; Thissen H; Voelcker NH
    Sci Rep; 2019 Feb; 9(1):1367. PubMed ID: 30718670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide).
    McInnes SJ; Irani Y; Williams KA; Voelcker NH
    Nanomedicine (Lond); 2012 Jul; 7(7):995-1016. PubMed ID: 22394185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior.
    Bodiford NK; McInnes SJP; Voelcker NH; Coffer JL
    Biomed Microdevices; 2018 Aug; 20(3):71. PubMed ID: 30097808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Surface Engineering Generates Core-Shell Porous Silicon Nanoparticles for Controlled and Targeted Delivery of an Anticancer Drug.
    Zhang DX; Tieu T; Esser L; Wojnilowicz M; Lee CH; Cifuentes-Rius A; Thissen H; Voelcker NH
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54539-54549. PubMed ID: 36469497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of PSi smart particles containing 20(S)-camptothecin-functionalized germanium nanoparticles.
    Jang S; Koh Y; Woo HG; Sohn H
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1328-32. PubMed ID: 21456181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.
    Wang CF; Mäkilä EM; Kaasalainen MH; Hagström MV; Salonen JJ; Hirvonen JT; Santos HA
    Acta Biomater; 2015 Apr; 16():206-14. PubMed ID: 25637067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications.
    Jarvis KL; Barnes TJ; Prestidge CA
    Adv Colloid Interface Sci; 2012 Jul; 175():25-38. PubMed ID: 22521238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral Curcumin via Hydrophobic Porous Silicon Carrier: Preparation, Characterization, and Toxicological Evaluation In Vivo.
    Zhang Y; Li W; Liu D; Ge Y; Zhao M; Zhu X; Li W; Wang L; Zheng T; Li J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31661-31670. PubMed ID: 31430116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical and optical investigation of dental pulp stem cell adhesion on modified porous silicon scaffolds.
    Soussi I; Mazouz Z; Collart-Dutilleul PY; Echabaane M; Martin M; Cloitre T; M'ghaieth R; Cuisinier FJG; Cunin F; Gergely C; Othmane A
    Colloids Surf B Biointerfaces; 2019 Sep; 181():489-497. PubMed ID: 31176121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.
    Nieto A; Hou H; Moon SW; Sailor MJ; Freeman WR; Cheng L
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1070-80. PubMed ID: 25613937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous silicon templated from silicon nanocrystallite and functionalized Si-H reactive group for grafting organic monolayer.
    Guo DJ; Wang J; Tan W; Xiao SJ; Dai ZD
    J Colloid Interface Sci; 2009 Aug; 336(2):723-9. PubMed ID: 19446831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating.
    McInnes SJ; Szili EJ; Al-Bataineh SA; Vasani RB; Xu J; Alf ME; Gleason KK; Short RD; Voelcker NH
    Langmuir; 2016 Jan; 32(1):301-8. PubMed ID: 26654169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of iCVD and porous silicon for the development of a controlled drug delivery system.
    McInnes SJ; Szili EJ; Al-Bataineh SA; Xu J; Alf ME; Gleason KK; Short RD; Voelcker NH
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3566-74. PubMed ID: 22720638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride.
    Tzur-Balter A; Gilert A; Massad-Ivanir N; Segal E
    Acta Biomater; 2013 Apr; 9(4):6208-17. PubMed ID: 23274152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide).
    Vasani RB; McInnes SJ; Cole MA; Jani AM; Ellis AV; Voelcker NH
    Langmuir; 2011 Jun; 27(12):7843-53. PubMed ID: 21604788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.
    Hernandez-Montelongo J; Naveas N; Degoutin S; Tabary N; Chai F; Spampinato V; Ceccone G; Rossi F; Torres-Costa V; Manso-Silvan M; Martel B
    Carbohydr Polym; 2014 Sep; 110():238-52. PubMed ID: 24906752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure.
    Awsiuk K; Bernasik A; Kitsara M; Budkowski A; Petrou P; Kakabakos S; Prauzner-Bechcicki S; Rysz J; Raptis I
    Colloids Surf B Biointerfaces; 2012 Feb; 90():159-68. PubMed ID: 22056253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent.
    Bedair TM; Yu SJ; Im SG; Park BJ; Joung YK; Han DK
    J Colloid Interface Sci; 2015 Dec; 460():189-99. PubMed ID: 26319336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications.
    Zhang DX; Esser L; Vasani RB; Thissen H; Voelcker NH
    Nanomedicine (Lond); 2019 Dec; 14(24):3213-3230. PubMed ID: 31855121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.
    Saengdee P; Chaisriratanakul W; Bunjongpru W; Sripumkhai W; Srisuwan A; Jeamsaksiri W; Hruanun C; Poyai A; Promptmas C
    Biosens Bioelectron; 2015 May; 67():134-8. PubMed ID: 25108848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.