These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30718681)
1. Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers. Oba M; Nagano Y; Kato T; Tanaka M Sci Rep; 2019 Feb; 9(1):1349. PubMed ID: 30718681 [TBL] [Abstract][Full Text] [Related]
2. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides. Oba M; Nakajima S; Misao K; Yokoo H; Tanaka M Bioorg Med Chem; 2023 Aug; 91():117409. PubMed ID: 37441862 [TBL] [Abstract][Full Text] [Related]
3. Cell-penetrating helical peptides having l-arginines and five-membered ring α,α-disubstituted α-amino acids. Kato T; Oba M; Nishida K; Tanaka M Bioconjug Chem; 2014 Oct; 25(10):1761-8. PubMed ID: 25188671 [TBL] [Abstract][Full Text] [Related]
4. [Peptide Foldamers: Structural Control and Cell-penetrating Ability]. Oba M Yakugaku Zasshi; 2019; 139(4):599-608. PubMed ID: 30930395 [TBL] [Abstract][Full Text] [Related]
5. Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling. Oba M; Kunitake M; Kato T; Ueda A; Tanaka M Bioconjug Chem; 2017 Jul; 28(7):1801-1806. PubMed ID: 28603971 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide. Kato T; Kita Y; Iwanari K; Asano A; Oba M; Tanaka M; Doi M Bioorg Med Chem; 2021 May; 38():116111. PubMed ID: 33838611 [TBL] [Abstract][Full Text] [Related]
7. Cell-Penetrating Peptide Foldamers: Drug-Delivery Tools. Oba M Chembiochem; 2019 Aug; 20(16):2041-2045. PubMed ID: 30997711 [TBL] [Abstract][Full Text] [Related]
8. De Novo Design of Cell-Penetrating Foldamers. Yokoo H; Misawa T; Demizu Y Chem Rec; 2020 Sep; 20(9):912-921. PubMed ID: 32463155 [TBL] [Abstract][Full Text] [Related]
9. A Helix-Stabilized Cell-Penetrating Peptide as an Intracellular Delivery Tool. Yamashita H; Oba M; Misawa T; Tanaka M; Hattori T; Naito M; Kurihara M; Demizu Y Chembiochem; 2016 Jan; 17(2):137-40. PubMed ID: 26560998 [TBL] [Abstract][Full Text] [Related]
10. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Yamashita H; Misawa T; Oba M; Tanaka M; Naito M; Kurihara M; Demizu Y Bioorg Med Chem; 2017 Mar; 25(6):1846-1851. PubMed ID: 28190655 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of Putative Helix-Breaking Amino Acids in the Design of Novel Stapled Peptides: Exploring Biophysical and Cellular Permeability Properties. Partridge AW; Kaan HYK; Juang YC; Sadruddin A; Lim S; Brown CJ; Ng S; Thean D; Ferrer F; Johannes C; Yuen TY; Kannan S; Aronica P; Tan YS; Pradhan MR; Verma CS; Hochman J; Chen S; Wan H; Ha S; Sherborne B; Lane DP; Sawyer TK Molecules; 2019 Jun; 24(12):. PubMed ID: 31226791 [TBL] [Abstract][Full Text] [Related]
12. Effects of Substituting Disubstituted Amino Acids into the Amphipathic Cell Penetrating Peptide Pep-1. Kato T; Numa H; Nakamachi M; Asano A; Doi M Chem Pharm Bull (Tokyo); 2022; 70(11):812-817. PubMed ID: 36328523 [TBL] [Abstract][Full Text] [Related]
13. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells. Furukawa K; Tanaka M; Oba M Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061 [TBL] [Abstract][Full Text] [Related]
14. An extended planar C5 conformation and a 310-helical structure of peptide foldamer composed of diverse alpha-ethylated alpha,alpha-disubstituted alpha-amino acids. Tanaka M; Nishimura S; Oba M; Demizu Y; Kurihara M; Suemune H Chemistry; 2003 Jul; 9(13):3082-90. PubMed ID: 12833290 [TBL] [Abstract][Full Text] [Related]
15. Plasmid DNA Delivery Using Cell-Penetrating Peptide Foldamers Composed of Arg-Arg-Aib Repeating Sequences. Oba M; Ito Y; Umeno T; Kato T; Tanaka M ACS Biomater Sci Eng; 2019 Nov; 5(11):5660-5668. PubMed ID: 33405697 [TBL] [Abstract][Full Text] [Related]
16. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity. Takada H; Tsuchiya K; Demizu Y Bioconjug Chem; 2022 Jul; 33(7):1311-1318. PubMed ID: 35737901 [TBL] [Abstract][Full Text] [Related]
17. Photoswitching of Cell Penetration of Amphipathic Peptides by Control of α-Helical Conformation. Kim GC; Ahn JH; Oh JH; Nam S; Hyun S; Yu J; Lee Y Biomacromolecules; 2018 Jul; 19(7):2863-2869. PubMed ID: 29856603 [TBL] [Abstract][Full Text] [Related]
18. Second generation, arginine-rich (R-X'-R)(4)-type cell-penetrating α-ω-α-peptides with constrained, chiral ω-amino acids (X') for enhanced cargo delivery into cells. Patil KM; Naik RJ; Vij M; Yadav AK; Kumar VA; Ganguli M; Fernandes M Bioorg Med Chem Lett; 2014 Sep; 24(17):4198-202. PubMed ID: 25096299 [TBL] [Abstract][Full Text] [Related]
19. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells. Checco JW; Lee EF; Evangelista M; Sleebs NJ; Rogers K; Pettikiriarachchi A; Kershaw NJ; Eddinger GA; Belair DG; Wilson JL; Eller CH; Raines RT; Murphy WL; Smith BJ; Gellman SH; Fairlie WD J Am Chem Soc; 2015 Sep; 137(35):11365-75. PubMed ID: 26317395 [TBL] [Abstract][Full Text] [Related]
20. β-Peptoid Foldamers at Last. Laursen JS; Engel-Andreasen J; Olsen CA Acc Chem Res; 2015 Oct; 48(10):2696-704. PubMed ID: 26176689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]