These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30718907)

  • 1. Gene therapy for retinal dystrophy.
    Sahel JA; Dalkara D
    Nat Med; 2019 Feb; 25(2):198-199. PubMed ID: 30718907
    [No Abstract]   [Full Text] [Related]  

  • 2. [Genotype screening of retinal dystrophies in the Japanese population using a microarray].
    Ogino K; Oishi A; Makiyama Y; Nakagawa S; Kurimoto M; Otani A; Yoshimura N
    Nippon Ganka Gakkai Zasshi; 2013 Jan; 117(1):12-8. PubMed ID: 23424971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations.
    Mackay DS; Ocaka LA; Borman AD; Sergouniotis PI; Henderson RH; Moradi P; Robson AG; Thompson DA; Webster AR; Moore AT
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3032-8. PubMed ID: 21310915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene discovery and prevalence in inherited retinal dystrophies.
    Hamel CP
    C R Biol; 2014 Mar; 337(3):160-6. PubMed ID: 24702842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Based Therapeutic Strategies for Inherited Retinal Dystrophies.
    Garanto A
    Adv Exp Med Biol; 2019; 1185():71-77. PubMed ID: 31884591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene supplementation therapy for recessive forms of inherited retinal dystrophies.
    Smith AJ; Bainbridge JW; Ali RR
    Gene Ther; 2012 Feb; 19(2):154-61. PubMed ID: 22033465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Mutations in Two Saudi Patients with Congenital Retinal Dystrophy.
    Safieh LA; Al-Otaibi HM; Lewis RA; Kozak I
    Middle East Afr J Ophthalmol; 2016; 23(1):139-41. PubMed ID: 26957854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dog models for blinding inherited retinal dystrophies.
    Petersen-Jones SM; Komáromy AM
    Hum Gene Ther Clin Dev; 2015 Mar; 26(1):15-26. PubMed ID: 25671556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials.
    Michalakis S; Gerhardt M; Rudolph G; Priglinger S; Priglinger C
    Klin Monbl Augenheilkd; 2021 Mar; 238(3):272-281. PubMed ID: 33784790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.
    Bacchi N; Casarosa S; Denti MA
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):3285-94. PubMed ID: 24867912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hereditary Retinal Dystrophy.
    Hohman TC
    Handb Exp Pharmacol; 2017; 242():337-367. PubMed ID: 28035529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Available Evidence on Leber Congenital Amaurosis and Gene Therapy.
    Alkharashi M; Fulton AB
    Semin Ophthalmol; 2017; 32(1):14-21. PubMed ID: 27686653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis.
    Weleber RG; Michaelides M; Trzupek KM; Stover NB; Stone EM
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):292-302. PubMed ID: 20811047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1.
    Henderson RH; Mackay DS; Li Z; Moradi P; Sergouniotis P; Russell-Eggitt I; Thompson DA; Robson AG; Holder GE; Webster AR; Moore AT
    Br J Ophthalmol; 2011 Jun; 95(6):811-7. PubMed ID: 20956273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect.
    Cideciyan AV; Jacobson SG; Drack AV; Ho AC; Charng J; Garafalo AV; Roman AJ; Sumaroka A; Han IC; Hochstedler MD; Pfeifer WL; Sohn EH; Taiel M; Schwartz MR; Biasutto P; Wit W; Cheetham ME; Adamson P; Rodman DM; Platenburg G; Tome MD; Balikova I; Nerinckx F; Zaeytijd J; Van Cauwenbergh C; Leroy BP; Russell SR
    Nat Med; 2019 Feb; 25(2):225-228. PubMed ID: 30559420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype.
    Khan AO; Budde BS; Nürnberg P; Kawalia A; Lenzner S; Bolz HJ
    Clin Genet; 2018 Jan; 93(1):149-154. PubMed ID: 28369829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.
    Gerard X; Garanto A; Rozet JM; Collin RW
    Adv Exp Med Biol; 2016; 854():517-24. PubMed ID: 26427454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies.
    Garanto A; Collin RWJ
    Methods Mol Biol; 2018; 1715():61-78. PubMed ID: 29188506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RPGRIP1-related retinal phenotype in children.
    Khan AO; Abu-Safieh L; Eisenberger T; Bolz HJ; Alkuraya FS
    Br J Ophthalmol; 2013 Jun; 97(6):760-4. PubMed ID: 23505306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early-onset severe retinal dystrophy as the initial presentation of IFT140-related skeletal ciliopathy.
    Khan AO; Bolz HJ; Bergmann C
    J AAPOS; 2014 Apr; 18(2):203-5. PubMed ID: 24698627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.