These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 30719536)

  • 1. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas.
    Wu S; Meng J; Yu Q; Li P; Fu S
    J Cancer Res Clin Oncol; 2019 Mar; 145(3):543-550. PubMed ID: 30719536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.
    Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY
    J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
    Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK
    Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive L-[methyl-11C] methionine cohort study with two PET scanners.
    Zhou W; Wen J; Huang Q; Zeng Y; Zhou Z; Zhu Y; Chen L; Guan Y; Xie F; Zhuang D; Hua T
    Eur J Nucl Med Mol Imaging; 2024 Apr; 51(5):1423-1435. PubMed ID: 38110710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas.
    Zhang B; Chang K; Ramkissoon S; Tanguturi S; Bi WL; Reardon DA; Ligon KL; Alexander BM; Wen PY; Huang RY
    Neuro Oncol; 2017 Jan; 19(1):109-117. PubMed ID: 27353503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.
    Foltyn-Dumitru M; Schell M; Rastogi A; Sahm F; Kessler T; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Eur Radiol; 2024 Apr; 34(4):2782-2790. PubMed ID: 37672053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Stage Training Framework Using Multicontrast MRI Radiomics for
    Truong NCD; Bangalore Yogananda CG; Wagner BC; Holcomb JM; Reddy D; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA
    Radiol Artif Intell; 2024 Jul; 6(4):e230218. PubMed ID: 38775670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis.
    Zhao J; Huang Y; Song Y; Xie D; Hu M; Qiu H; Chu J
    Eur Radiol; 2020 Aug; 30(8):4664-4674. PubMed ID: 32193643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status.
    De Looze C; Beausang A; Cryan J; Loftus T; Buckley PG; Farrell M; Looby S; Reilly R; Brett F; Kearney H
    J Neurooncol; 2018 Sep; 139(2):491-499. PubMed ID: 29770897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O
    Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q
    J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas.
    Lu CF; Hsu FT; Hsieh KL; Kao YJ; Cheng SJ; Hsu JB; Tsai PH; Chen RJ; Huang CC; Yen Y; Chen CY
    Clin Cancer Res; 2018 Sep; 24(18):4429-4436. PubMed ID: 29789422
    [No Abstract]   [Full Text] [Related]  

  • 15. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network.
    Choi KS; Choi SH; Jeong B
    Neuro Oncol; 2019 Sep; 21(9):1197-1209. PubMed ID: 31127834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas.
    Zhang H; Ouyang Y; Zhang H; Zhang Y; Su R; Zhou B; Yang W; Lei Y; Huang B
    Clin Radiol; 2024 May; 79(5):e682-e691. PubMed ID: 38402087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.
    Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J
    Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas.
    Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O
    Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.